www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenExponentialfunktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Exp- und Log-Funktionen" - Exponentialfunktion
Exponentialfunktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:53 So 14.10.2007
Autor: admir

Hallo,
alle zusammen ich habe eine Frage. Und zwar muss ich anhand von zwei gegebenen Punkten P und Q, c und a von f(x)= [mm] c*a^x [/mm] berechnen.

Also P(1/1) und
       Q(2/2)

Daraus muss die Zerfallsfunktion f(x)= [mm] c*a^x [/mm] entstehen.

Könnte mir da bitte jemand behilflich sein? Danke im vorraus!!

Gruß Admir


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt


        
Bezug
Exponentialfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:01 So 14.10.2007
Autor: Martinius

Hallo,

> alle zusammen ich habe eine Frage. Und zwar muss ich anhand
> von zwei gegebenen Punkten P und Q, c und a von f(x)= [mm]c*a^x[/mm]
> berechnen.
>  
> Also P(1/1) und
>         Q(2/2)
>  
> Daraus muss die Zerfallsfunktion f(x)= [mm]c*a^x[/mm] entstehen.
>  
> Könnte mir da bitte jemand behilflich sein? Danke im
> voraus!!

Also, Du könntest zwei Gleichungen aufstellen, indem Du beide Punkte einsetzt:

$2 = [mm] c*a^{2}$ [/mm]

$1 = [mm] c*a^{1}$ [/mm]

und dann die 1. Gleichung durch die 2. dividieren:

$2 = [mm] a^{2-1} [/mm] = a$

Dann setzt Du den gefundenen Wert für a noch in eine der beiden Gleichungen ein, um c zu berechnen.


LG, Martinius


Bezug
                
Bezug
Exponentialfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:00 So 14.10.2007
Autor: admir

hallo

also setze ich 2= a^(2-1)= a in 2= [mm] c*a^2 [/mm] ein.

daraus folgt dann c* [mm] 2^2= [/mm] 2
                          = c* 4    = 2/-4
                          = c         = -2
Die Formel lautet also f(x)= -2* [mm] 2^x [/mm]

ich bitte um bestätigung

Bezug
                        
Bezug
Exponentialfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:11 So 14.10.2007
Autor: admir

hallo

also setze ich 2= a^(2-1)= a in 2= [mm] c*a^2 [/mm] ein.

daraus folgt dann c* [mm] 2^2= [/mm] 2
                          = c* 4    = 2/-4
                          = c         = -2
Die Formel lautet also f(x)= -2* [mm] 2^x [/mm]

ich bitte um bestätigung

Bezug
                                
Bezug
Exponentialfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:48 So 14.10.2007
Autor: koepper


> hallo
>  
> also setze ich 2= a^(2-1)= a in 2= [mm]c*a^2[/mm] ein.

Ja.

> daraus folgt dann c* [mm]2^2=[/mm] 2

genau.

Was jetzt folgt, verstehe ich leider nicht mehr...

>                            = c* 4    = 2/-4
>                            = c         = -2
>  Die Formel lautet also f(x)= -2* [mm]2^x[/mm]


Die Gleichung $c * 4 = 2$ kannst du sicher korrekt lösen. Versuchs nochmal.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]