www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenExponentialfunktion auflösen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Exp- und Log-Funktionen" - Exponentialfunktion auflösen
Exponentialfunktion auflösen < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialfunktion auflösen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:09 Mo 22.10.2012
Autor: Haggi

Aufgabe
fc(x):=ce^(x+c)

Bestimmen Sie alle Lsgn der Gleichung fc(x)=1
Lösen Sie alle Gleichungen fc(x)=e nach x auf

So gerade Studium angefangen und Mathe ist leider schon ein paar mehr Monte her...

bei der einen bin ich soweit gekommen

[mm] 1=c*e^x*e^c e^x [/mm] kann man doch durch den ln wegkürzen wenn ich das soweit in Erinnerung habe...ich weiß nur nicht genau wie ich das auflösen kann soweit ich weiß ist doch allgemein [mm] x=e^a [/mm] <=> a=lnx oder?
sofern das stimmt in wie weit kann ich das in die Gleichung einsetzen? Leider finde ich diesbezüglich nicht viel in meiner Schulformelsammlung...

Ich hätte es so gemacht ln(1)= ln(c)*x*c
stimmt das soweit?? (ich bezweifle doch recht stark)


für die zweite Aufgabenstellung wäre ich dann soweit

ln(e)= ln(c)*x*c


in wie weit liege ich hier richtig bzw falsch?
Und zu guter letzt noch eine wohl ziemlich dumme frage wo ist der unterschied zwischen lösen sie nach x auf und bestimmen sie alle Lsgn für die Gleichung??

Ich wäre euch sehr dankbar für ein paar tipps bzw Lösungsvorschläge

Mit freundlichen Grüßen Haggi

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Exponentialfunktion auflösen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:39 Mo 22.10.2012
Autor: teo

Hallo,

> fc(x):=ce^(x+c)
>  
> Bestimmen Sie alle Lsgn der Gleichung fc(x)=1
>  Lösen Sie alle Gleichungen fc(x)=e nach x auf
>  So gerade Studium angefangen und Mathe ist leider schon
> ein paar mehr Monte her...

Monde oder Monate? ;-)

> bei der einen bin ich soweit gekommen
>  
> [mm]1=c*e^x*e^c e^x[/mm]

Soll [mm] $c*e^{x+c} [/mm] = [mm] c*e^x*e^c e^x$ [/mm] sein? Wohl eher: [mm] $1=ce^{x+c}=ce^ce^x$ [/mm] !

Du willst x herausbekommen. Hierfür hast du zwei Möglichkeiten, die du beide mal rechnen solltest, um dir die Logarithmusgesetze zu vergegenwärtigen:

1. Möglichkeit: Erst mal alles mit x auf eine Seite und alles ohne auf die andere und dann den ln anwenden!

2. Möglichkeit: Direkt den ln anwenden. Hierbei, aber genau wie bei der 1.Möglichkeit die Logarithmusgesetze beachten:

$ln(xy) = ln(x) + ln(y)$ und [mm] $ln(\frac{x}{y}) [/mm] = ln(x)-ln(y)$

> kann man doch durch den ln wegkürzen
> wenn ich das soweit in Erinnerung habe...ich weiß nur
> nicht genau wie ich das auflösen kann soweit ich weiß ist
> doch allgemein [mm]x=e^a[/mm] <=> a=lnx oder?

Das ist richtig, denn [mm] $ln(e^x) [/mm] = xln(e)=x*1=x$

>  sofern das stimmt in wie weit kann ich das in die
> Gleichung einsetzen? Leider finde ich diesbezüglich nicht
> viel in meiner Schulformelsammlung...

Wikipedia -> Logarithmusgesetze hilft auch, allerdings sollten die obigen Logarithmusgesetze auch in der Schulformelsammlung stehen.
  

> Ich hätte es so gemacht ln(1)= ln(c)*x*c
>  stimmt das soweit?? (ich bezweifle doch recht stark)

Das ist falsch... du solltest dir die Logarithmusgesetze unbedingt angucken!    

>
> für die zweite Aufgabenstellung wäre ich dann soweit
>  
> ln(e)= ln(c)*x*c
>  

Genauso wie oben! Gut zu wissen ist noch, dass ln(1) = 0 und ln(e) = 1 ist ;-)

> in wie weit liege ich hier richtig bzw falsch?
>  Und zu guter letzt noch eine wohl ziemlich dumme frage wo
> ist der unterschied zwischen lösen sie nach x auf und
> bestimmen sie alle Lsgn für die Gleichung??

Vom Prinzip keiner...
  

> Ich wäre euch sehr dankbar für ein paar tipps bzw
> Lösungsvorschläge
>  
> Mit freundlichen Grüßen Haggi
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Exponentialfunktion auflösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:25 Di 23.10.2012
Autor: Haggi

Ok vielen Dank, dann erhalte ich für die eine Aufgabe

ln(1)=ln(c)+x+c
x=-ln(c)-c


für die zweite würde ich dann

ln(e)=ln(c)+x+c
x=1-ln(c)-c

erhalten.


Kann man daraus aufgrund von irgendwelchen Rechengesetzen noch etwas kürzen oder wäre dies hier quasi das Ergebnis?

Vielen Dank für die Rechengesetze, ich muss aber gestehen, dass ich diese beiden immer noch nicht in der Formelsammlung gefunden habe...
Gruß Haggi



Bezug
                        
Bezug
Exponentialfunktion auflösen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:31 Di 23.10.2012
Autor: reverend

Hallo Haggi,


> Ok vielen Dank, dann erhalte ich für die eine Aufgabe
>  
> ln(1)=ln(c)+x+c
>  x=-ln(c)-c

Das ist richtig. [ok]

> für die zweite würde ich dann
>  
> ln(e)=ln(c)+x+c
>  x=1-ln(c)-c
>  
> erhalten.

Das ist auch richtig. [ok]

> Kann man daraus aufgrund von irgendwelchen Rechengesetzen
> noch etwas kürzen oder wäre dies hier quasi das
> Ergebnis?

Es wäre nicht quasi..., es ist.

> Vielen Dank für die Rechengesetze, ich muss aber gestehen,
> dass ich diese beiden immer noch nicht in der
> Formelsammlung gefunden habe...
>  Gruß Haggi

Schlechte Formelsammlung. ;-)

Grüße
reverend



Bezug
                                
Bezug
Exponentialfunktion auflösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:49 Di 23.10.2012
Autor: Haggi

Super, vielen vielen Dank für eure Hilfe!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]