www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisExponentialfunktionen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Schul-Analysis" - Exponentialfunktionen
Exponentialfunktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialfunktionen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 23:03 Sa 31.12.2005
Autor: jokey

Aufgabe
In der Natur wird Co abgebaut.
Immer nach 5 min. soll nur noch 60 % der Ausgangsmenge vorhanden sein.
Die Ausgangsmenge ist 5%.

a) Bestimme eine Funktion, die die Entwicklung des CO Abbaus beschreibt
b) Nach welcher Zeit t liegt die Konzentration unter 1 Promille?

Hallo zusammen und schon mal vielen Dank für die Hilfe ...

bei a) habe ich glaube ich schon die Funktion gefunden und zwar:

F(x) = 0,05 * 0,6 hoch 0,2x

nun aber zu b): da habe ich gedacht, ich müsste folgende Gleichung aufstellen:

1/1000 = 0,05 * 0,6 hoch 0.2x

dann habe ich daraus das gemacht:

1/1000 = 0,05 * 0,90 hoch x    

und dann:

1/1000 = 0,045 hoch x

jetzt, sofern das richtig ist weiß ich nicht genau..
mal 1000 beide Seiten multiplizieren??

dann stände da ja:
1=45 hoch x und dann ist die Lösung doch 45.
Aber nach ein bisschen Ausprobieren, habe ich bemerkt, dass aber doch auch schon vor 45 Jahren die 1 Promillegrenze unterschritten wird.

Dann stimmt vielleicht doch die Gleichung nicht??
    



        
Bezug
Exponentialfunktionen: Idee
Status: (Antwort) fertig Status 
Datum: 10:02 So 01.01.2006
Autor: Disap


> In der Natur wird Co abgebaut.
>  Immer nach 5 min. soll nur noch 60 % der Ausgangsmenge
> vorhanden sein.
>  Die Ausgangsmenge ist 5%.
>  
> a) Bestimme eine Funktion, die die Entwicklung des CO
> Abbaus beschreibt
>  b) Nach welcher Zeit t liegt die Konzentration unter 1
> Promille?
>  Hallo zusammen und schon mal vielen Dank für die Hilfe
> ...

Hallo Jokey.

> bei a) habe ich glaube ich schon die Funktion gefunden und
> zwar:
>  
> F(x) = 0,05 * 0,6 hoch 0,2x

Das ist die Funktion wohl eher nicht. Du hast (mindestens) zwei Punkte
[mm] P_{1}(0 [/mm] | 5%) mit 5% =  [mm] \bruch{5}{100} [/mm]
( [mm] P_{2}(5 [/mm] | 60% von [mm] \bruch{5}{100}) [/mm] )
( [mm] P_{2}(5 [/mm] | 60% von [mm] \bruch{5}{100}) [/mm] )
[mm] P_{2}(5 [/mm] | 0.03)

Und aus diesen beiden Punkten bildest du eine Exponentialfunktion mit der allgemeinen Form:

$f(x) = c * [mm] e^{k*x}$ [/mm]

oder

$f(x) = [mm] a*b^x [/mm] $

> nun aber zu b): da habe ich gedacht, ich müsste folgende
> Gleichung aufstellen:
>  
> 1/1000 = 0,05 * 0,6 hoch 0.2x

Das wäre richtig, wenn die Funktion stimmen würde! Man muss die Funktion mit 1Promille (=0.001) gleichsetzen und nach x auflösen.

> dann habe ich daraus das gemacht:
>  
> 1/1000 = 0,05 * 0,90 hoch x    
>
> und dann:
>  
> 1/1000 = 0,045 hoch x
>  
> jetzt, sofern das richtig ist weiß ich nicht genau..
>  mal 1000 beide Seiten multiplizieren??

Das würde gehen, bringt einem aber nichts. WEIL

> dann stände da ja:
>  1=45 hoch x und dann ist die Lösung doch 45.

[notok]

[mm] $0,045^x [/mm] * 1000  [mm] \not= 45^x$ [/mm]

Nach den Potenzgesetzen darfst du das so nicht vereinfachen.
Denn

$2 * [mm] 2^4 \not=4^4$ [/mm]

[mm] $4^4 [/mm] = 256$

[mm] $2\red{(2^4)} [/mm] = [mm] 2*\red{16}=32$ [/mm]


>  Aber nach ein bisschen Ausprobieren, habe ich bemerkt,
> dass aber doch auch schon vor 45 Jahren die 1
> Promillegrenze unterschritten wird.

Angenommen du hast tatsächlich den Term:

[mm] 1=45^x [/mm]

Um das nach x aufzulösen, benötigst du, denn so gehts am einfachsten, den (natürlichen) Logarithmus. Sagt dir das etwas?

> Dann stimmt vielleicht doch die Gleichung nicht??
>      


Viele Grüße Disap

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]