www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenExponentialfunktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Exp- und Log-Funktionen" - Exponentialfunktionen
Exponentialfunktionen < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialfunktionen: Basis e, Nullstellenberechnung
Status: (Frage) beantwortet Status 
Datum: 09:15 Mo 15.01.2007
Autor: marlenemasw

Aufgabe
f(x)= [mm] x*e^{x} [/mm]

Nullstellenberechnung:

f(x)= [mm] x*e^{x}=0 [/mm]    | ich dividiere durch x

[mm] e^{x}=0 [/mm]                 | und logarithmiere

x* ln e = ln 0  --> keine Nullstelle weil kein ln aus 0

aber wenn ich es so mache:

(x)= [mm] x*e^{x}=0 [/mm]    | ich dividiere durch [mm] e^{x} [/mm]

dann x=0    

Meine Frage: Warum geht die erste Möglichkeit nicht?

Gibt es spezielle Regeln für das Logarithmieren mit e? (zb. [mm] e^{x} [/mm] * [mm] e^{x} [/mm] = [mm] e^{2x}) [/mm]

Danke!


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Exponentialfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:43 Mo 15.01.2007
Autor: Slartibartfast

Hallo marlenemasw,

man teilt prinzipiell nicht durch die gesuchte Variable sondern klammert sie aus. In diesem Fall ist das ja schon getan. Dann schaust du dir die beiden Teilfkts an und überlegst, wann x bzw [mm] e^x [/mm] NULL wird. Für [mm] e^x [/mm] wird das nie der Fall sein und x ist bei NULL 0 ^^. Somit hat die gesamte Fkt ihre Nullstelle bei NULL.

Die zweite Frage versteh ich nicht recht.
ln(e^2x) = 2x ?
Ansonsten gelten die normalen Potenz- und Logarithmengesetze.

Bezug
                
Bezug
Exponentialfunktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:52 Mo 15.01.2007
Autor: marlenemasw

Danke!

Bezug
        
Bezug
Exponentialfunktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:47 Mo 15.01.2007
Autor: marlenemasw


>  
> Nullstellenberechnung:
>
> f(x)= [mm]x*e^{x}=0[/mm]    | ich dividiere durch x
>  
> [mm]e^{x}=0[/mm]                 | und logarithmiere
>  
> x* ln e = ln 0  --> keine Nullstelle weil kein ln aus 0
>  
> aber wenn ich es so mache:
>  
> (x)= [mm]x*e^{x}=0[/mm]    | ich dividiere durch [mm]e^{x}[/mm]
>  
> dann x=0    
>
> Meine Frage: Warum geht die erste Möglichkeit nicht?
>  
> Gibt es spezielle Regeln für das Logarithmieren mit e? (zb.
> [mm]e^{x}[/mm] * [mm]e^{x}[/mm] = [mm]e^{2x})[/mm]
>  
> Danke!
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.  


ich hab echt alles wieder vergessen.

e*x ist doch das selbe wie x*e. Ich darf aber aber das x nicht in den exponenten nehmen: [mm] e^{x}. [/mm] auch wenn [mm] x*e^{x} [/mm] darf ich nicht [mm] e^{x^{2}} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.> f(x)= [mm]x*e^{x}[/mm]

Bezug
                
Bezug
Exponentialfunktionen: e*x
Status: (Antwort) fertig Status 
Datum: 11:40 Mo 15.01.2007
Autor: BessyResi

hallo,

du machst dir alles zu kompliziert, denke nicht so viel nach...grundsätzlich ist e einfach nur eine konstante, es steckt somit nur eine zahl dahinter. falls du dir in eine rrechenoperation unsicher bist, rechen es mit dem taschenrechner aus. ansonsten empfehle ich dir die formalesammlung mathematik (orange). wenn du sie lesen kannst, schaffst du alle klausuren!

viel glück.

e*x = x*e = [mm] e^1 [/mm] * [mm] x^1 [/mm] aber nicht [mm] e^x [/mm] oder [mm] x^e [/mm]
letzte rechen-op geht auch ned!

vg





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]