www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraExponentialmatrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Exponentialmatrix
Exponentialmatrix < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:15 Mo 20.06.2005
Autor: Grapadura

hi, ich soll die exponentialmatrix [mm] e^{A} [/mm] berechnen und habe dafür eine gewisse matrix A bekommen, zudem noch eine Matrix S, sodas ich [mm] SAS^{-1} [/mm] berechnen kann. [mm] SAS^{-1} [/mm] ist als tipp angegeben.

gibt es einen bestimmten weg zu berechnung der exponentialmatrizen?
im fischer konnte ich nichts darüber finden.
kann ich sagen, dass [mm] e^{A} [/mm] dasselbe ist wie [mm] \pmat{e^{a_{11}}&...&e^{a_{1n}}\\ ......\\e^{a_{n1}}&...&e^{a_{nn}}} [/mm] ?
oder kann ich von der [mm] SAS^{-1} [/mm] diagonalmatrix auf die exponentialmatrix kommen?

danke

gruß

stefan



        
Bezug
Exponentialmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 13:36 Mo 20.06.2005
Autor: Julius

Hallo!

Wenn $A$ diagonalisierbar ist, dann gibt es ja eine Diagonalmatrix [mm] $D=\pmat{d_{11} & 0 & \ldots & 0 \\ 0 & d_{22} & 0 & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \ldots & 0 & d_{nn}}$ [/mm] und eine invertierbare Matrix $S$ mit

[mm] $SAS^{-1} [/mm] = D$.

Nun gilt (mache dir das bitte klar):

[mm] $S\exp(A)S^{-1} [/mm] = [mm] \exp(D) [/mm] = [mm] \pmat{e^{d_{11}} & 0 & \ldots & 0 \\ 0 & e^{d_{22}} & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \ldots & 0 & e^{d_{nn}}}$, [/mm]

und das kann man nach [mm] $\exp(A)$ [/mm] umstellen.

>  kann ich sagen, dass [mm]e^{A}[/mm] dasselbe ist wie

> [mm]\pmat{e^{a_{11}}&...&e^{a_{1n}}\\ ......\\e^{a_{n1}}&...&e^{a_{nn}}}[/mm]
> ?

Nein.

Viele Grüße
Julius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]