www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenmathematische StatistikExponentialverteilung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "mathematische Statistik" - Exponentialverteilung
Exponentialverteilung < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialverteilung: Erwartungstreue des Schätzers
Status: (Frage) beantwortet Status 
Datum: 18:43 Do 30.10.2014
Autor: GeMir

Aufgabe
[mm] $X_1, \ldots, X_n \overset{iid}{\sim} Exp(\lambda), \quad \lambda [/mm] > 0$
Zeigen Sie, dass der Maximum-Likelihood-Schätzer [mm] $\hat{\lambda} [/mm] = [mm] \frac{1}{\overline{X}}$ [/mm] nicht erwartungstreu für [mm] $\lambda$ [/mm] ist.


Die Exponentialverteilung macht mich gerade so ein wenig zu schaffen.
Ich habe bereits festgestellt, dass ich allein mit der Linearität des Erwartungswertes bei dieser Untersuchung nicht weiter kommen werde, denn [mm] $$E\bigg(\frac{1}{\overline{X}}\bigg) [/mm] = [mm] E\bigg(\frac{1}{\frac{1}{n}\cdot\sum_{i=1}^{n}{X_i}}\bigg) [/mm] = [mm] n\cdot E\bigg(\frac{1}{\sum_{i=1}^{n}{X_i}}\bigg) =\quad [/mm] ?$$
Versuche die Definition des Erwartungswertes anzuwenden.
Im Falle einer stetigen Verteilung:
$$E(X) = [mm] \int_{-\infty}^{\infty}{x\cdot f(x)dx}$$ [/mm]
Das heißt aber, ich bräuchte jetzt die Dichte von [mm] $\hat{\lambda} [/mm] = [mm] \frac{1}{\overline{X}}$ [/mm] aber wie komme ich darauf? Faltung und danach Transformation mit [mm] \frac{1}{x}? [/mm]

        
Bezug
Exponentialverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:12 Do 30.10.2014
Autor: blascowitz

Hallo,

dürft ihr benutzen, dass die Summe von $n$ unabhängigen und exponentialverteilten Zufallsvariablen [mm] $X_{j}$ [/mm] mit Parameter [mm] $\lambda$ [/mm] Erlangverteilt mit den Parametern $n$ und [mm] $\lambda$ [/mm] ist.

Damit kannst du dann den Erwartungswert von [mm] $\frac{1}{\sum\limits_{j=1}^{n}X_{j}}$ [/mm] leicht berechnen.

Viele Grüße
Blasco





Bezug
                
Bezug
Exponentialverteilung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 21:24 Do 30.10.2014
Autor: GeMir

Dürfen wir nicht.

Bezug
                        
Bezug
Exponentialverteilung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Sa 01.11.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]