www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenmathematische StatistikExponentialverteilung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "mathematische Statistik" - Exponentialverteilung
Exponentialverteilung < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:32 Fr 22.05.2009
Autor: bezauberndejeany

Hallo!
Habe eine (für Leute, die das verstehen) bestimmt total einfache Frage.
Ich habe eine Zufallsvariable X, sie ist exponentialverteilt. Wie ist dann [mm] \overline{X} [/mm] verteilt? Bzw. wie kann ich sowas ausrechnen. Auch für andere Verteilungen?

DANKE schonmal!!!

        
Bezug
Exponentialverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:54 Fr 22.05.2009
Autor: Fulla

Hallo bezauberndejeany,

was meinst du denn mit [mm] $\overline [/mm] X$? Ist das der Mittelwert? Oder der Erwartungswert?
Falls ja, hat der keine Verteilung, sondern ist eine Zahl.

Die []Exponentialverteilung hat die W.dichte [mm] $f(x)=\lambda e^{-\lambda x}$ ($x\ge [/mm] 0$).
Der Erwartungswert ist [mm] $E(X)=\int_0^\infty x*f(x)dx=\int_0^\infty x\lambda e^{-\lambda x}dx=\frac{1}{\lambda}$ [/mm]

Im Allgemeinen musst du von [mm] $-\infty$ [/mm] bis [mm] $\infty$ [/mm] integrieren. Die Exponentialverteilung ist aber 0 für $x<0$, darum wird hier nur von 0 bis [mm] $\infty$ [/mm] integriert.


Lieben Gruß,
Fulla

Bezug
                
Bezug
Exponentialverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:57 Fr 22.05.2009
Autor: vivo

Hallo,

oder meinst du das Komplement, dass würde aber nur für Ereignisse Sinn machen und nicht für ZV's:

A:= X [mm] \in [/mm] [t, [mm] \infty[ [/mm]

und willst

P( [mm] \overline{A} [/mm] )

bei reellen ZV's ist dass halt dann einfach die Wkeit dass die ZV einen Wert im Intervall [0,t] hat.


Bezug
                        
Bezug
Exponentialverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:12 Fr 22.05.2009
Autor: bezauberndejeany

Sorry, ich meine den Mittelwert.
Beispielsweise ist bei der Normalverteilung
[mm] X~N(\mu,\delta^{2}) [/mm]
[mm] \overline{X}~N(\mu,\delta^{2}/n) [/mm]
Also mit Delta meine ich Sigma, aber das Zeichen gibt es hier irgendwie nicht.
Und genauso möchte ich gerne wissen, wie [mm] \overline{X} [/mm] für ein exponentialverteiltes X verteilt ist.
Danke!!!

Bezug
                                
Bezug
Exponentialverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:57 Fr 22.05.2009
Autor: vivo

Hallo,

wie meinst du dass?

meinst du dass du unabhängige ZV's [mm] X_1 [/mm] , ... , [mm] X_n [/mm] hast die alle [mm] N(\mu, \sigma^2) [/mm] verteilt sind und du willst wissen wie dann

[mm] \overline{X} [/mm] = [mm] \frac{X_1 + ... + X_n}{n} [/mm]

verteilt ist ???????

gruß

Bezug
                                        
Bezug
Exponentialverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:03 Fr 22.05.2009
Autor: bezauberndejeany

Ja, genau. Nur, dass ich das bei der Normalverteilung schon weiß.
Ich möchte wissen, wie [mm] \overline{X}=\bruch{X_{1}+...+X_{n}}{n} [/mm] verteilt ist, wenn [mm] \overline{X}_{i} [/mm] jeweils unabhängig exponentialverteilt sind.

Bezug
                                
Bezug
Exponentialverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:01 Fr 22.05.2009
Autor: vivo

Hallo,

wenn alle [mm] X_i [/mm] unabhängig sind, dann musst du eben die verteilung von [mm] \underline{X} [/mm] = [mm] X_1 [/mm] + ... + [mm] X_n [/mm]    durch Faltung berechnen und dann die von [mm] \overline{X}= \frac{\underline{X}}{n} [/mm]

nochmal zur Normalverteilung:

sind alle [mm] X_i \quad N(\mu [/mm] , [mm] \sigma^2 [/mm] ) verteilt so ist

[mm] \underline{X} \quad [/mm] N(n [mm] \mu [/mm] , n [mm] \sigma^2) [/mm] verteilt

und [mm] \overline{X} \quad N(\mu, \sigma^2 [/mm] / n)

die Faltung von exponentialverteilten Zufallsvariablen ergibt eine Gamma-Verteilung mit folgender Dichte:

[mm]f(n)=\begin{cases} \frac{b^p}{\Gamma{p}}x^{p-1}e^{-bx}, & \mbox{für } x \ge \mbox{ 0} \\ 0, & \mbox{für } x < \mbox{ 0} \end{cases}[/mm]

jetzt musst halt noch schauen wie die Verteilung dann ist wenn die Summe noch durch n geteilt wird.

gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]