www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Exponentielles Wachstum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mathe Klassen 8-10" - Exponentielles Wachstum
Exponentielles Wachstum < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentielles Wachstum: Frage zu einer Aufgabe
Status: (Frage) beantwortet Status 
Datum: 10:49 Di 17.03.2009
Autor: Database

Aufgabe
Die Zerfallskonstante von Kohlenstoff ist k=0,012028  pro 100 Jahre.
Bei Ausgrabungen wird ein Fossil gefunden, das noch zu 68% des Kohlenstoff enthält. Wie alt ist der Fund?

Folgende Formel:

B(t+1) = 100 - 0,012028 * 100

Mein Taschenrechner rechnet dann Rekursionsformeln aus.

Meine Frage ist jetzt, ob und wie es möglich ist, einen genauen Wert t
für beispielweise die 68% zu bekommen (für t kommt dann natürlich ein Wert mit Kommastellen heraus, aber das ist egal)

68 = Formel?????
Wie kann ich das berechnen, dass der Wert für die Zeit t genau 68 ist?

        
Bezug
Exponentielles Wachstum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:55 Di 17.03.2009
Autor: Database

Ich habe jetzt selbst die Antwort gefunden.
Es geht mit B(t)= B(0) * e^(k*t)

Danke :-)

Bezug
        
Bezug
Exponentielles Wachstum: Antwort
Status: (Antwort) fertig Status 
Datum: 11:09 Di 17.03.2009
Autor: Adamantin


> Die Zerfallskonstante von Kohlenstoff ist k=0,012028  pro
> 100 Jahre.
>  Bei Ausgrabungen wird ein Fossil gefunden, das noch zu 68%
> des Kohlenstoff enthält. Wie alt ist der Fund?
>  Folgende Formel:
>  
> B(t+1) = 100 - 0,012028 * 100
>  
> Mein Taschenrechner rechnet dann Rekursionsformeln aus.
>  
> Meine Frage ist jetzt, ob und wie es möglich ist, einen
> genauen Wert t
>  für beispielweise die 68% zu bekommen (für t kommt dann
> natürlich ein Wert mit Kommastellen heraus, aber das ist
> egal)
>  
> 68 = Formel?????
>  Wie kann ich das berechnen, dass der Wert für die Zeit t
> genau 68 ist?

So entschuldige die lange Wartezeit. Ich fasse die Aufgabe etwas anders auf bzw nutze eine andere Formel, nämlich die für exponentielles Wachstum.

Demnach wäre meine Formel:

$ [mm] f(x)=1*(1-0,012028)^x [/mm] $ für x in 100er Schritten

Dann wäre deine Lösung einfach mit:

$ [mm] f(x)=1*(1-0,012028)^x=0,68 [/mm] $ zu finden

Als Ergebnis würdest du erhalten:

x=31,87 also gut 32*100 Jahre. Das dieses Ergebnis stimmt, kannst du einfach mit der Probe bestimmen.


Bezug
                
Bezug
Exponentielles Wachstum: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:26 Di 17.03.2009
Autor: Database

Stimmt. Da hast du Recht.

Gilt das auch für beschränktes Wachstum?

Also bei zBsp: B(1)= 0,1 + [mm] \bruch{8}{199} [/mm] * (20-0,1)

Wie kann ich jetzt hier den Wert t aus rechnen für den Ergebniswert 13?

Bezug
                        
Bezug
Exponentielles Wachstum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:57 Di 17.03.2009
Autor: Adamantin

Ich persönlich hatte in der Schule leider nie beschränktes Wachstum, aber rs ist eine Formel wie jede andere auch, also kannst du natürlich auch genau so ein beliebiges t ausrechnen.

Ich habe die Formel [mm] f(t)=(f(0)-c)*e^{-at}+c [/mm] gefunden, die offenbar gar nicht deinem Ansatz entspricht, obwohl ich auch nicht verstehe, was die Zahlen in deiner Gleichung bedeuten, bzw. wo dort das t sein soll, was du ausrechnen willst, denn ein t muss ja in jedem Fall irgendwo in der Gleichung auftauchen ^^

Also entweder du gibst mir deine Anfangsbedingungen und nicht die fertige Gleichung, oder du probierst es einfach erstmal alleine oder wartest, bis das hier jemand liest, der besser über beschränktes Wachstum Bescheid weiß

Bezug
                                
Bezug
Exponentielles Wachstum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:06 Di 17.03.2009
Autor: Database

Die Formel für Beschränktes Wachstum ist

B(t+1)= B(t) + k * (G-B(t))

G= Grenze

Weißt du jetzt vielleicht einen Weg?

Bezug
                        
Bezug
Exponentielles Wachstum: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Do 19.03.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]