www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenExtrem-/Wendepunkte
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Exp- und Log-Funktionen" - Extrem-/Wendepunkte
Extrem-/Wendepunkte < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extrem-/Wendepunkte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:09 So 09.11.2008
Autor: Mandy_90

Aufgabe
Untersuche
a) [mm] f(x)=x*e^{-0.5x^{2}} [/mm] auf Extrempunkte  
b) [mm] g(x)=(e^{x}-e^{-x})^{2} [/mm] auf Wendepunkte  

Hallo zusammen^^

Kann mir jemand nachgucken ob ich die Aufgabe richtig gerechnet habe?

a) [mm] f'(x)=e^{-0.5x^{2}}*(1-x)=0 [/mm]

x=1 >0

[mm] f''(x)=e^{-0.5x^{2}}*(-2+x) [/mm]

[mm] f''(1)=-0-6\not=0 [/mm] ----> Minimum bei (1/0.6)

b) [mm] f'(x)=2e^{2x}-2e^{-2x} [/mm]

[mm] f''(x)=4e^{2x}+4e^{-2x}=0 [/mm]

[mm] e^{2x}=e^{-2x} [/mm]

Für x müsste 0 rauskommen,aber ich weiß nicht wie ich das nach x auflösen soll??

lg

        
Bezug
Extrem-/Wendepunkte: zu Aufgabe b.)
Status: (Antwort) fertig Status 
Datum: 17:14 So 09.11.2008
Autor: Loddar

Hallo Mandy!



> b) [mm]f'(x)=2e^{2x}-2e^{-2x}[/mm]
>  
> [mm]f''(x)=4e^{2x}+4e^{-2x}=0[/mm]

[ok]

  

> [mm]e^{2x}=e^{-2x}[/mm]

[notok] Hier fehlt ein Minuszeichen: [mm] $e^{2x} [/mm] \ = \ [mm] -e^{-2x}$ [/mm]

Multipliziere die Gleichung nun mit [mm] $e^{2x}$ [/mm] .


Gruß
Loddar


Bezug
        
Bezug
Extrem-/Wendepunkte: Antwort
Status: (Antwort) fertig Status 
Datum: 17:22 So 09.11.2008
Autor: M.Rex

Hallo

In a) passt die Ableitung nicht ganz.

[mm] f(x)=x*e^{-0,5x²} [/mm]

[mm] f'(x)=1*e^{-0,5x²}+x*(-x*e^{-0,5x²}) [/mm]
[mm] =(1-x^{\red{2}})*e^{-0,5x²} [/mm]

Und damit:  
[mm] 1-x_{e}²=0 [/mm]
[mm] \gdw x_{e}=\pm1 [/mm]

Die Probe mit der 2ten Ableitung mache mal selber.

Ausserdem passt die y-Koordinate nicht :

[mm] f(1)=1*e^{-0,5*(1)²} [/mm]
[mm] =e^{-0,5} [/mm]

Dementsprechend [mm] f(-1)=-e^{-0,5} [/mm]

Marius

Bezug
                
Bezug
Extrem-/Wendepunkte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:41 So 09.11.2008
Autor: Mandy_90

ok,ich hab die zweite Ableitung berechnet:

[mm] f''(x)=x*e^{-0.5x^{2}}*(-3+x^{2}) [/mm]

[mm] f''(1)=-1.21\not=0 [/mm]

[mm] f''(-1)=3.297\not=0 [/mm]

Damit hab ich also 2 Wendepunkte [mm] W_{1}=(1/e^{-0.5}) W_{2}=(1/-e^{-0.5}). [/mm]

Ist das jetzt ok so?

lg

Bezug
                        
Bezug
Extrem-/Wendepunkte: Antwort
Status: (Antwort) fertig Status 
Datum: 17:57 So 09.11.2008
Autor: M.Rex

Hallo

> ok,ich hab die zweite Ableitung berechnet:
>  

[mm] f''(x)=x*e^{-0.5x^{2}}*(-3+x^{2}) [/mm]

Die passt aber auch nicht ganz:

Aus [mm] f'(x)=(1-x²)*e^{-0,5x²} [/mm]
folgt (Wieder mit der Kombi aus Produkt- und Kettenregel)
[mm] f''(x)=2x*e^{-0,5x²}+(1-x²)*(-x)*e^{-0,5x²} [/mm]
[mm] =(2x-(x(1-x²))e^{-0,5x²} [/mm]
[mm] =(x+x³)e^{-0,5x²} [/mm]

  
[mm] f''(1)=...\red{<}\green{>}0 [/mm] also HochTiefpunkt bei H(1/f(1))
[mm] f''(-1)=...\red{<}\green{>}0 [/mm] also HochTiefpunkt bei H(-1/f(-1))

>  
> Damit hab ich also 2 Wendepunkte [mm]W_{1}=(1/e^{-0.5}) W_{2}=(1/-e^{-0.5}).[/mm]
>  
> Ist das jetzt ok so?

Für Wendepunkte [mm] W(x_{w}/F(x_{w}) [/mm] gilt.

[mm] f''(x_{w})=0 [/mm] und [mm] f'''(x_{w})\ne0. [/mm]


Mach dir bitte noch einmal die Bedingungen für Extrem- und Wendestellen klar, und beachte die Kombination aus Produkt- und Kettenregel, das ist bei der Funktionsuntersuchung von e-Funktionen ein gängiges Verfahren.

>  
> lg

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]