www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeExtrem.-aufgabe Rechtecksfunkt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Extremwertprobleme" - Extrem.-aufgabe Rechtecksfunkt
Extrem.-aufgabe Rechtecksfunkt < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extrem.-aufgabe Rechtecksfunkt: Rechteck an einen Graphen
Status: (Frage) beantwortet Status 
Datum: 15:19 So 21.10.2007
Autor: Dummkopf88

Aufgabe
f2(x) = [mm] e^x(2-x) [/mm]

Ein Rechteck liegt im ersten Quadranten und wird nach links und nach unten durch die Koordinatenachsen begrenzt. Die rechte obere Ecke soll auf dem Graphen von f2 liegen. Berechnen Sie die Koordinaten dieses Eckpunkts so, dass das Rechteck den größten Flächeninhalt annimmt. Geben Sie die Größe dieser maximalen Rechtecksfläche an. Das Rechteck rotiert nun um die Y-Achse, so dass ein Zylinder entsteht. Berechnen Sie die Koordinaten dieses Eckpunkts nun so, dass der Zylinder das größtmögliche Volumen annimmt. Vergleichen Sie die beiden Koordinaten des Eckpunktes.

Hallo Leute :),

Ich habe mir überlegt, dass das Rechteck durch die Funktion R(x) = (x-0)* (f2(x)-0) beschrieben werden kann, also:
R(x) = x*f2(x) = [mm] x*(2-x)*e^x [/mm]

Eingeschränkte Bedingung ist: 0 < x < 2, da sonst kein Rechteck entsteht.

Als einzige Extrema kommen aber raus: x = 2 und x = 0. Für x = 2 ist zwar f''2(x) ungleich 0, aber trotzdem entsteht dann doch kein Rechteck... Könnt ihr mir weiterhelfen? Bei der Aufgabe mit dem Zylinder hab ich ungefähr das gleiche Problem. Hat da jemand ne Idee?

Danke schonmal im Vorraus!

        
Bezug
Extrem.-aufgabe Rechtecksfunkt: ableiten!
Status: (Antwort) fertig Status 
Datum: 15:23 So 21.10.2007
Autor: Loddar

Hallo Dummkopf!


Ich vermute mal, Du hast hier die Nullstellen der Ausgangsfunktion $R(x) \ = \ [mm] x*(2-x)*e^x$ [/mm] bestimmt.

Für die gesuchten Extrema benötigst Du aber die Nullstellen der 1. Ableitung [mm] $R\red{'}(x) [/mm] \ = \ ...$ .


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]