www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenExtrema bei Fktn. mit Summenz.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionen" - Extrema bei Fktn. mit Summenz.
Extrema bei Fktn. mit Summenz. < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extrema bei Fktn. mit Summenz.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:26 Do 10.01.2008
Autor: tobi-

Aufgabe
Sei [mm]n \in \IN[/mm]. Sei die Funktion [mm]f: \IR \to \IR[/mm] definiert durch
[mm]f(x) := exp(1503-\summe_{k=1}^{n}(15^k-x)^2)-150304[/mm]
Bestimmen Sie die lokalen Extrema der Funktion f. Begründen Sie Ihr Ergebnis

Probleme macht mir die Nullstelle der ersten Ableitung.

Als erste Ableitung hab ich
[mm] f'(x)=-2\cdot\summe_{k=1}^{n}(15^k-x) \cdot exp(1503-\summe_{k=1}^{n}(15^k-x)^2) [/mm]
Da [mm]exp(...) \not= 0[/mm] und -2 sowieso, werden die Nullstellen von [mm]f'(x)[/mm] also durch [mm]\summe_{k=1}^{n}(15^k-x)[/mm] bestimmt.
Intuitiv hätte ich jetzt gesagt, dass [mm]\summe_{k=1}^{n}(15^k-x)=0 \gdw x=15^k[/mm].
Aber die Lösung, die ich vor mir habe (allerdings 'nur' von einem Mitstudi gelöst), sagt, dass
[mm]\summe_{k=1}^{n}(15^k-x)=\summe_{k=1}^n(15^k)-\summe_{k=1}^nx = \summe_{k=1}^n(15^k) - nx = 0 \gdw x=\bruch{1}{n} \cdot \summe_{k=1}^{n}(15^k)[/mm]. Maple bestätigt mir das Ergebnis auch und den Weg dahin kann ich auch nachvollziehen.

Allerdings verstehe ich nicht, wieso meine intuitive Lösung nicht richtig ist. Wenn das eingesetzt wird, wird aus der Summe doch ein 0+0+0..+0. Da hätte ich gerne einen kleinen Denkanstoß. (Hoffentlich habe ich das richtige Forum getroffen. Mit dem Aufgabentyp an sich habe ich ja kein Problem)

Vielen Dank schon einmal im voraus,
tobi

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Extrema bei Fktn. mit Summenz.: Anmerkungen
Status: (Antwort) fertig Status 
Datum: 17:01 Fr 11.01.2008
Autor: Roadrunner

Hallo tobi!


Zum einen ist Deine Ableitung faslch. Da muss noch ein Faktor $(-1)_$ als "innerste Ableitung" von [mm] $\left(15^k \ \red{-} \ x\right)$ [/mm] .

Zum anderen übersiehst Du wohl bei Deinem Lösungsansatz, dass $k_$ lediglich eine Zählervariable ist, die die unterschiedlichen Werte von $1_$ bis $n_$ annimmt.


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]