www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSteckbriefaufgabenExtrema bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Steckbriefaufgaben" - Extrema bestimmen
Extrema bestimmen < Steckbriefaufgaben < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extrema bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:49 Sa 26.04.2008
Autor: Mandy_90

Aufgabe
Gesucht ist eine ganzrationale Funktion 4.Grades ,deren Graph achsensymmetrisch zur y-Achse ist,durch den ursprung geht und an der Stelle x=1 einen Wemdepunkt hat.
Wo liegen die Extrema der Kurvenschar mit den angegebenen Eigenschaften?

Hallo^^

Also die Gleichung für die Funktion lautet: [mm] f(x)=ax^{4}+cx^{2} [/mm]
[mm] f'(x)=4ax^{3}+2cx=0 [/mm]
[mm] x=\pm\wurzel{\bruch{c}{2a}} [/mm]

Ist das richtig so???

lg

        
Bezug
Extrema bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:07 Sa 26.04.2008
Autor: Martinius

Hallo,

> Gesucht ist eine ganzrationale Funktion 4.Grades ,deren
> Graph achsensymmetrisch zur y-Achse ist,durch den ursprung
> geht und an der Stelle x=1 einen Wemdepunkt hat.
>  Wo liegen die Extrema der Kurvenschar mit den angegebenen
> Eigenschaften?
>  Hallo^^
>  
> Also die Gleichung für die Funktion lautet:
> [mm]f(x)=ax^{4}+cx^{2}[/mm]
>  [mm]f'(x)=4ax^{3}+2cx=0[/mm]
>  [mm]x=\pm\wurzel{\bruch{c}{2a}}[/mm]
>  
> Ist das richtig so???
>  
> lg


Ich würde eher ansetzen

$f(x) = [mm] ax^4+bx^3+cx^2+dx$ [/mm]

mit den beiden Informationen [mm] W_1(-1;f(-1)) [/mm] und [mm] W_2(1;f(1)); [/mm]
d.h. f'(-1)=0=f''(-1) und f'(1)=0=f''(1).


LG, Martinius

Bezug
                
Bezug
Extrema bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:13 Sa 26.04.2008
Autor: Mandy_90

Wie kommst du auf f'(-1) und f''(-1) ??In der Aufgabe steht nämlich 1.
Und die ungeraden Exponenten fallen doch in diesem Fall weg,also bleibt nur noch [mm] ax^{4}+cx^{2},deswegen [/mm] hatte ich auch so angesetzt.

Bezug
                        
Bezug
Extrema bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:17 Sa 26.04.2008
Autor: Martinius

Hallo,

entschuldige bitte, ist Unsinn was ich geschriben habe; ich hätte zuerst nachrechnen sollen.

Ich dachte, weil sie achsensymmetrisch sein sollte hätte sie zwei Sattelpunkte, aber so eine Funktion 4. Grades gibt es gar nicht.

LG, Martinius

Bezug
        
Bezug
Extrema bestimmen: richtige Antwort.
Status: (Antwort) fertig Status 
Datum: 22:35 Sa 26.04.2008
Autor: Martinius

Hallo Mandy,

Du hast richtig angesetzt: [mm] $f(x)=ax^4+cx^2$ [/mm]

Nun soll der Wendepunkt bei x=1 liegen, d. h., f''(1)=0.

[mm] $f'(x)=4ax^3+2cx$ [/mm]

[mm] $f''(x)=12ax^2+2c$ [/mm]

$f''(1)=12a+2c=0$

c = -6a

[mm] $f(x)=ax^4-6ax^2$ [/mm]


LG, Martinius





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]