www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenExtrema einer Funktionsschar
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Exp- und Log-Funktionen" - Extrema einer Funktionsschar
Extrema einer Funktionsschar < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extrema einer Funktionsschar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:58 Do 18.10.2007
Autor: moody

Aufgabe
fk(x) = [mm] (x^3 [/mm] - [mm] kx^2) [/mm] * [mm] e^x [/mm]

Um dazu die Extrema zu finden habe ich als Ableitungen:

fk'(x) = [mm] e^x (x^3 [/mm] + [mm] 3x^2 [/mm] - [mm] kx^2 [/mm] - kx)

fk''(x) = [mm] e^x (x^3 [/mm] + [mm] 6x^2 [/mm] - [mm] kx^2 [/mm] + 6x - 4kx - 2k)

Nun habe ich die erste Ableitung 0 gesetzt. [mm] e^x [/mm] habe ich ausser Acht gelassen da es nie 0 wird und es reicht wenn ein Faktor 0 ist:

[mm] (x^3 [/mm] + [mm] 3x^2 [/mm] - [mm] kx^2 [/mm] - kx) = 0

x [mm] (x^2 [/mm] + 3x - kx - 2k) = 0

also ist eine Lösung schonmal x = 0

bleibt noch

[mm] x^2 [/mm] + 3x - kx - 2k = 0

[mm] x^2 [/mm] + x(3-k) - 2k = 0

nach pq formel erhalte ich:

x = [mm] -\bruch{x(3-k) }{2} [/mm] +/- [mm] \wurzel{\bruch{(x(3-k) }{2})^2 +2k} [/mm]

stimmt das? ich glaube ja, aber wäre halt gut wenn das jemand bestätigen könnte.

        
Bezug
Extrema einer Funktionsschar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:03 Do 18.10.2007
Autor: moody

sorry

das x muss vor dem (3-k) weg!

Bezug
        
Bezug
Extrema einer Funktionsschar: (fast) alles richtig soweit!
Status: (Antwort) fertig Status 
Datum: 15:05 Do 18.10.2007
Autor: Loddar

Hallo moody!


> Um dazu die Extrema zu finden habe ich als Ableitungen:
>  
> fk'(x) = [mm]e^x (x^3[/mm] + [mm]3x^2[/mm] - [mm]kx^2[/mm] - kx)

[ok]

  

> fk''(x) = [mm]e^x (x^3[/mm] + [mm]6x^2[/mm] - [mm]kx^2[/mm] + 6x - 4kx - 2k)

[ok]

  

> Nun habe ich die erste Ableitung 0 gesetzt. [mm]e^x[/mm] habe ich
> ausser Acht gelassen da es nie 0 wird und es reicht wenn
> ein Faktor 0 ist:

[ok]


> [mm](x^3[/mm] + [mm]3x^2[/mm] - [mm]kx^2[/mm] - kx) = 0
> x [mm](x^2[/mm] + 3x - kx - 2k) = 0

[ok]

  

> also ist eine Lösung schonmal x = 0

[ok]

  

> bleibt noch
> [mm]x^2[/mm] + 3x - kx - 2k = 0
> [mm]x^2[/mm] + x(3-k) - 2k = 0

[ok]

  

> nach pq formel erhalte ich:
> x = [mm]-\bruch{x(3-k) }{2}[/mm] +/- [mm]\wurzel{\bruch{(x(3-k) }{2})^2 +2k}[/mm]

Wenn Du auf der rechten Seite der Gleichung die beiden $x_$ rausschmeißt, stimmt es.


Gruß
Loddar


Bezug
                
Bezug
Extrema einer Funktionsschar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:07 Do 18.10.2007
Autor: moody

danke


das mit den x fiel mir auch noch auf, aber erst später^^

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]