www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeExtrema mit Nebenbedingung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Extremwertprobleme" - Extrema mit Nebenbedingung
Extrema mit Nebenbedingung < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extrema mit Nebenbedingung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:31 Mi 14.05.2008
Autor: lernfaul

Hallo,

ich weiß, wie man bei
f(x,y) = x²+3y² NB: x²+y²=1 vorgeht,
(sprich
1. Ableitung bilden, 0 setzen, zweite Ableitung bilden, einsetzen, auf Minimalität und Maximalität prüfen, fertig.), aber wie gehe ich
bei Ungleichungen vor, also bei
f(x,y) = x²+3y² NB: [mm] x²+y²\ge1 [/mm]  ???

Danke für eure Hilfe

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Extrema mit Nebenbedingung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:42 Mi 14.05.2008
Autor: abakus


> Hallo,
>  
> ich weiß, wie man bei
>  f(x,y) = x²+3y² NB: x²+y²=1 vorgeht,
>  (sprich
> 1. Ableitung bilden, 0 setzen, zweite Ableitung bilden,
> einsetzen, auf Minimalität und Maximalität prüfen,
> fertig.), aber wie gehe ich
>  bei Ungleichungen vor, also bei
>  f(x,y) = x²+3y² NB: [mm]x²+y²\ge1[/mm]  ???
>  
> Danke für eure Hilfe
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt

Hier im Prinzip genauso. Betrachte es erst für x²+y²=1.
Dann kannst du ja x²+y²=1+h setzen (mit h>0) und untersuchen, ob dabei ein noch kleineres Minimum (oder ein noch größeres Maximum) entsteht.
Viele Grüße
Abakus

Bezug
                
Bezug
Extrema mit Nebenbedingung: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 15:49 Mi 14.05.2008
Autor: lernfaul

Vielen Dank, wie ist es denn bei $ [mm] x²+y²\le1 [/mm] $ und
bei f(x,y,z) muss man anders vorgehen, richtig?
Kann mir da jemand einen Tip geben, bitte, finde das
nirgends im web...

Bezug
                        
Bezug
Extrema mit Nebenbedingung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:51 Mi 14.05.2008
Autor: angela.h.b.


> Vielen Dank, wie ist es denn bei [mm]x²+y²\le1[/mm] und
>  bei f(x,y,z) muss man anders vorgehen, richtig?
>  Kann mir da jemand einen Tip geben, bitte, finde das
>  nirgends im web...

Hallo,

bearbeitest Du Aufgaben aus der Schule? jedenfalls postest Du im Schulforum.

Oder bist Du an der Uni? Sind partielle Ableitung und Hessematrix bereits bekannt?

Gruß v. Angela






Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]