Extremalrechnung < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:56 So 08.02.2009 | Autor: | carnetti |
Aufgabe | Ein Rechteck soll einen Umfang (U) haben und sich um eine seiner eigene Mittelachsen rotieren, so daß ein Zylinder ensteht. Es sollen nun die Maße für das Rechteck gefunden werden, die das Volumen des Zylinders maximal werden lassen. Die zu Optimierende Größe ist also das Volumen des Zylinders. Einen Ansatz habe ich schon :V(r,h)= Pie [mm] *r^2 [/mm] *h Wie könnte man diese Aufgabe lösen ??
Ich habe die Aufgabe noch einmal überarbeitet, da ich die aufgabe falsch abgeschrieben habe. Das Volumen ist natürlich Pie * [mm] r^2 [/mm] *h
|
Die nächste Aufgabe lautet:
Ich brache für die Optimierung des Volumens eines Quaders eine gesuchte
länge (X). Die Zielfunktion habe ich schon und ist
V(x) = [mm] 4x^3 -144x^2+1260x [/mm] ,die Ableitung davon ist [mm] 12x^2- [/mm] 288x +1260=0
Die Auflösung nach x ist mir noch nicht bekannt.
Wie könnte ich diese Gleichung lösen ?
Auch hier habe ich versucht die Quadratische Ergänzung zu benutzten sowie die P-Q -Formel, doch die Diskriminate ist negativ also ein negative Zahl unter einer Wurzel. Leider ohne erfolg.
Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.onlinemathe.de/forum/Extremalrechnung
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:04 So 08.02.2009 | Autor: | leduart |
Hallo
1. Deine Volumenformel fuer den Zylinder ist falsch. Wo kommt denn das [mm] 1/3*r^2 [/mm] her? stell dir die laengen in cm vor, dann addierst du cm3 und [mm] cm^2! [/mm] Der erste Teil ist das Volumen.
Der Umfang des Rechtecks mit den Seiten a und b ist?
was davon wird r, was hin deinem Zylinder. Schreib das als hauptbed. auf und schmeiss dann a oder b durch den bekannten umfang U raus.
2. Du kannst doch sicher eine quadratische Gleichung loesen: quadratische ergaenzung, abc Formel oder pq Formel?
erstmal wuerd ich noch die Gl durch 12 teilen.
Gruss leduart
|
|
|
|