www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeExtrempunltberechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Extremwertprobleme" - Extrempunltberechnung
Extrempunltberechnung < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extrempunltberechnung: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:58 Mi 22.11.2006
Autor: Karo2005

Aufgabe
Ermittle die Extrempunkte.Verwende für die hinreichende Bedingung die 2.Ableitung.
h) [mm] f(x)=3x^{5}-25x³+60x+4 [/mm]

Hallo, also ich habe folgende Frage:

Ich habe bereits die 1. Ableitung gebildet und eine Nullstelle durch probieren herausgefunden. Um nun andere Nullstellen herauszufinden, muss man doch erstmal die Polynomdivison anwenden (oder?). Und hier ist mein Problem:Ich komme da nicht weiter...bis jetzt habe ich 15x³-15x²-90 x raus.
Aber irgendwie bleibt da immer noch ein rest bei der Polynomdivision und das letzte x fällt nicht  weg..ich hoffe ihr könnt mir helfen,
danke Karo2005









Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
Extrempunltberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:44 Mi 22.11.2006
Autor: informix

Hallo Karo2005 und [willkommenmr],

> Ermittle die Extrempunkte.Verwende für die hinreichende
> Bedingung die 2.Ableitung.
>  h) [mm]f(x)=3x^{5}-25x³+60x+4[/mm]
>  Hallo, also ich habe folgende Frage:
>  
> Ich habe bereits die 1. Ableitung gebildet und eine
> Nullstelle durch probieren herausgefunden. Um nun andere
> Nullstellen herauszufinden, muss man doch erstmal die
> Polynomdivison anwenden (oder?). Und hier ist mein
> Problem:Ich komme da nicht weiter...bis jetzt habe ich
> 15x³-15x²-90 x raus.
>  Aber irgendwie bleibt da immer noch ein rest bei der
> Polynomdivision und das letzte x fällt nicht  weg..ich
> hoffe ihr könnt mir helfen,
> danke Karo2005
>  

Es wäre schön, wenn du uns deine Rechnung zeigen würdest, denn dann können wir dir viel schneller zeigen, ob und wo du einen Fehler gemacht hast.
Was hast du denn gerechnet? Wie lautet deine erste Nullstelle?


Gruß informix

Bezug
                
Bezug
Extrempunltberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:34 Mi 22.11.2006
Autor: Karo2005

also ich habe bis jetzt folgendes raus:
erste nullstelle nur ausprobieren: 1
dann wollte ich die anderen ersteinmal durch polynomdivision rausbekommen. hab also folgendes gemacht:
[mm] (15x^{4}-75x²+60):(x-1)=15x³-15x²-90x... [/mm] bis dahin ganz gut nur bleibt nachdem ich die "60" runtergeholt habe 150 x übrig...und das ist der besagte Rest..
Meine Rechnung:
[mm] (15x^{4}-75x²+60):(x-1)=15x³-15x²-90x [/mm]
[mm] -15x^{4}+15x³ [/mm]
                  15x³-75x²
                 -15x²-15x²
                           -90x²+60
                           -90x²+90x

Bezug
                        
Bezug
Extrempunltberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:40 Mi 22.11.2006
Autor: Manabago

Wieso durch Probieren? du musst einfach f'(x)=0 setzen, dann hast du deine Extrema. Die 2. Ableitung brauchst du dann nur noch, um zu zeigen, ob es sich um Minimum oder Maximum handelt (bzw. ob das Extremum überhaupt existiert). Ok?
Lg

Bezug
                                
Bezug
Extrempunltberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:01 Mi 22.11.2006
Autor: Karo2005

Okay..vielen Dank für die superschnelle Antwort:)
Schönen Abend noch

Bezug
                                        
Bezug
Extrempunltberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:11 Mi 22.11.2006
Autor: TheWonderer

Es sei noch erwähnt das du die Gleichung [mm] $15x^4-75x^2+60=0$ [/mm] am einfachsten löst indem du x²=u setzt (Substitution) und dann die so entstandene Gleichung 15u²-75u+60=0 mit der Mitternachtsformel löst und dann wieder [mm] x=\wurzel{u} [/mm] setzt.

mfg
TheWonderer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]