www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSteckbriefaufgabenExtremstellen Bedingungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Steckbriefaufgaben" - Extremstellen Bedingungen
Extremstellen Bedingungen < Steckbriefaufgaben < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremstellen Bedingungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:35 Mo 07.05.2007
Autor: drummerphil

Aufgabe
Der Verlauf eines Seiles zwischen zwei Aufhängepunkten A(0|0) und B(50|10) kann näherungsweise durch eine quadratische Funktion f mit [mm]f(x) = ax²+bx+c[/mm] beschrieben werden (Einheiten in m).
a) Bestimmen Sie a, b und c so, dass die Tangente im Punkt B die Steigung 1 hat.
b) Welche Koordinaten hat der tiefste Punkt T des Seils? In welchem Punkt D ist der Durchhang d des Seils am größten?

Bild zu der Aufgabe:
[Dateianhang nicht öffentlich]

Hallo!
Meine ersten Überlegungen bei der Aufgabe a) waren:
Als notwendige Bedingung habe ich eine normale Steigungsgleichung genommen: [mm] y=mx+n [/mm]
Steigung m soll ja 1 sein und n hab ich von der y-Koordinate vom Punkt B.
=> [mm] y_B=x+10 [/mm]
Meine nächste Überlegung war, dass ich die Funktion f und die Steigungsfunktion irgendwie gleichstellen sollte, aber schon hier komm ich nicht so recht weiter. Im übrigen weiss ich auch garnicht, ob das der richtige Ansatz ist.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich würde mich freuen, wenn ich möglichst schnell eine Antwort bekomme, weil ich morgen die Klausur scheibe!

Gruß drummerphil

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
Extremstellen Bedingungen: Steigung = 1. Ableitung
Status: (Antwort) fertig Status 
Datum: 18:50 Mo 07.05.2007
Autor: Loddar

Hallo drummerphil,

[willkommenmr] !!


Die Steigung einer Kurve (und damit auch die steigung der entsprechenden Tangente) wird roch gegeben durch die 1. Ableitung der Funktion an der betrachteten Stelle.

Damit sollte diese Bestimmungsgleichung [mm] $f'(x_B) [/mm] \ = \ f'(50) \ = \ ... \ = \ 1$ lauten.

Die anderen beiden Betimmungsgleichungen erhältst Du aus den vorgegebenen Punktkoordinaten:

[mm] $f(x_A) [/mm] \ = \ f(0) \ = \ ... \ = \ 0$

[mm] $f(x_B) [/mm] \ = \ f(50) \ = \ ... \ = \ 10$


Gruß
Loddar


PS: Viel Glück [kleeblatt] morgen bei Deiner Klausur.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]