www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Extremwert Zylinder+aufg. kege
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Mathe Klassen 8-10" - Extremwert Zylinder+aufg. kege
Extremwert Zylinder+aufg. kege < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwert Zylinder+aufg. kege: brauche hilfe bei der lösung
Status: (Frage) beantwortet Status 
Datum: 14:24 Do 02.02.2012
Autor: angelos

Aufgabe
Ein Gefäß, dessen Gesamtvolumen 384 π Liter beträgt, besteht aus einem Zylinder mit aufgesetztem Kegel. Die Basiskreise des Zylinders und des Kegels sind gleich groß, die Kegelhöhe beträgt 2/3 des Basisdurchmessers. Wie groß ist der Durchmesser und die Höhe des Gefäßes zu wählen, damit der Materialverbrauch minimal wird?
     (d = 12 dm; h = 16 dm; O = 192 π dm²)

Hallo Leute, brauche dringend eure Hilfe! Komme bei dem Beispiel einfach nicht weiter:

o(r) := r* pi *s + 2*r* pi *he + (r)^(2)* pi
d mit 12dm habi ich bereits errechnet.

komme aber bei oberfläche und höhe nicht auf die richtige lösung.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

h hätte ich folgender maßen ausgerechnet:
solve(384* pi =(r)^(2)* pi *h +  (1)/(3) *(r)^(2)* pi *( (2)/(3) *2*r), h)

O := 2* pi *r*9.39445 +  (2)/(3) *(r)^(2)* pi

brauche dringend hilfe! Ist sehr wichtig!!


        
Bezug
Extremwert Zylinder+aufg. kege: Antwort
Status: (Antwort) fertig Status 
Datum: 15:37 Do 02.02.2012
Autor: Diophant

Hallo angelos und

[willkommenmr]

Deine Zielfunktion ist richtig, das ist die gute Nachricht. Mit dem hiesigen TeX-Editor aufgbeschrieben sieht sie so aus:

[mm] O(r)=\pi*r*s+2\pi*r*h_e+\pi*r^2 [/mm]

Da fehlt jetzt aber noch s. Über die Angabe, dass die Höhe des Kegels 2/3 des Basisdurchmessers ist, kann man s ebenfalls abhängig von r ausdrücken.

Und jetzt kommt die schlechte Nachricht: du hast offensichtlich noch nicht wirklich verstanden, wazu das nganze mit der Zielfunktion  gut ist. Die angegebenen Daten sind nämlich nicht zum Einsetzen gedacht, sondern sie sind vermutlich die Lösung (ich sage vermutlich, da ich die Aufgabe nicht komplett durchgerechnet habe).

Es kommen in deiner Zielfunktion auf der rechten Seite mit r und [mm] h_e [/mm] (:=Zylinderhöhe) nach wie vor zwei Variable vor. Diese hängen jedoch über das gegebene Volumen miteinander zusammen. Du musst jetzt eine Formel für das Volumen dieses zusammengsetzten Körpers aufstellen, das bekannte Volumen einsetzen und die so entstandene Gleichung nach [mm] h_e [/mm] auflösen. Was dort herauskommt, kannst du nun an Stelle von [mm] h_e [/mm] in die Zielfunktion O(r) einsetzen.

Und erst dann kommt der wesentliche Teil der Rechnung: du suchst die minimale Oberfläche (da die Oberfläche den Materialverbrauch bestimmt). Es handelt sich also um ein Extremwertproblem, genauer: um ein Minimum der Zielfunktion.

Ohne GTR/CAS müsste man jetzt also mit der 1. Ableitung arbeiten. Mit Rechenhilfsmittel musst du jedoch die Gleichung

O'(r)=0

nach r auflösen.

Gruß, Diophant


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]