www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenExtremwertaufgabe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Extremwertaufgabe
Extremwertaufgabe < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:54 Fr 25.04.2008
Autor: matheja

Aufgabe
Hi.Habe Probleme bei einer Extremwertaufgabe.

Ein Dreieck mit den Seitenlängen a,b,c hat laut der Hernonschen Flächneformel den Flächeninhalt [mm] F=\wurzel(s(s-a)(s-b)(s-c)), [/mm] wobei der halbe Umfang mit s bezeichnet ist,d.h 2s=a+b+c.Für welche seitenlängen ist der Flächeninhalt bei gegebenen Umfang extremal ?
Wählen sie das Maximum aus und bergründen sie ihre Entscheidung.

Ansatz:
2s=a+b+c <=> [mm] s=\bruch{a+b+c}{2} [/mm] in F einsetzen.
[mm] F=\wurzel(\bruch{a+b+c}{2}(\bruch{a+b+c}{2}-a)(\bruch{a+b+c}{2}-b)(\bruch{a+b+c}{2}-c)). [/mm]

[mm] F_a=\bruch{a(-{a}^{2}+{b}^{2}+{c}^{2})}{2*\wurzel({-a}^{4}+2({b}^{2}-{c}^{2}){a}^{2}-{({b}^{2}-{c}^{2})}^{2})} [/mm]

[mm] F_b=\bruch{b({a}^{2}-{b}^{2}+{c}^{2})}{2*\wurzel({-a}^{4}+2({b}^{2}-{c}^{2}){a}^{2}-{({b}^{2}-{c}^{2})}^{2})} [/mm]

[mm] F_c=\bruch{c({a}^{2}+{b}^{2}-{c}^{2})}{2*\wurzel({-a}^{4}+2({b}^{2}-{c}^{2}){a}^{2}-{({b}^{2}-{c}^{2})}^{2})} [/mm]

grad [mm] F=(F_a,F_b,F_c)=0 [/mm]
[mm] <=>a(-{a}^{2}+{b}^{2}+{c}^{2})=b({a}^{2}-{b}^{2}+{c}^{2})=c({a}^{2}+{b}^{2}-{c}^{2})=0 [/mm]

Komm dann aber nicht weiter bzw. ich glaube, dass etwas nicht richtig ist.Möglicherweise der Ansatz.

Danke für Hilfe

matheja

        
Bezug
Extremwertaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 18:01 Fr 25.04.2008
Autor: abakus


> Hi.Habe Probleme bei einer Extremwertaufgabe.
>  Ein Dreieck mit den Seitenlängen a,b,c hat laut der
> Hernonschen Flächneformel den Flächeninhalt
> [mm]F=\wurzel(s(s-a)(s-b)(s-c)),[/mm] wobei der halbe Umfang mit s
> bezeichnet ist,d.h 2s=a+b+c.Für welche seitenlängen ist der
> Flächeninhalt bei gegebenen Umfang extremal ?
>  Wählen sie das Maximum aus und bergründen sie ihre
> Entscheidung.
>  
> Ansatz:
>  2s=a+b+c <=> [mm]s=\bruch{a+b+c}{2}[/mm] in F einsetzen.

>  
> [mm]F=\wurzel(\bruch{a+b+c}{2}(\bruch{a+b+c}{2}-a)(\bruch{a+b+c}{2}-b)(\bruch{a+b+c}{2}-c)).[/mm]
>  
> [mm]F_a=\bruch{a(-{a}^{2}+{b}^{2}+{c}^{2})}{2*\wurzel({-a}^{4}+2({b}^{2}-{c}^{2}){a}^{2}-{({b}^{2}-{c}^{2})}^{2})}[/mm]
>  
> [mm]F_b=\bruch{b({a}^{2}-{b}^{2}+{c}^{2})}{2*\wurzel({-a}^{4}+2({b}^{2}-{c}^{2}){a}^{2}-{({b}^{2}-{c}^{2})}^{2})}[/mm]
>  
> [mm]F_c=\bruch{c({a}^{2}+{b}^{2}-{c}^{2})}{2*\wurzel({-a}^{4}+2({b}^{2}-{c}^{2}){a}^{2}-{({b}^{2}-{c}^{2})}^{2})}[/mm]
>  
> grad [mm]F=(F_a,F_b,F_c)=0[/mm]
>  
> [mm]<=>a(-{a}^{2}+{b}^{2}+{c}^{2})=b({a}^{2}-{b}^{2}+{c}^{2})=c({a}^{2}+{b}^{2}-{c}^{2})=0[/mm]
>  
> Komm dann aber nicht weiter bzw. ich glaube, dass etwas
> nicht richtig ist.Möglicherweise der Ansatz.
>  
> Danke für Hilfe
>  
> matheja

Hallo,
angenommen, es gibt drei Seitenlängen mit [mm] a\le [/mm] b [mm] \le [/mm] c und maximalem Flächeninhalt des Dreiecks. Durch zyklisches Vertauschen der Beschriftungen hätte auch ein Dreieck mit den gleichen Seitenlängen und  [mm] b\le [/mm] c [mm] \le [/mm] a den gleichen maximalen Flächeninhalt. Daraus folgt [mm] a\le [/mm] b [mm] \le [/mm] c [mm] \le [/mm] a, was auf a=b=c führt.
Viele Grüße
Abakus



Bezug
                
Bezug
Extremwertaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:32 Fr 25.04.2008
Autor: matheja

Aufgabe
Danke abaskus für den Hinweis.

> Hallo,
>  angenommen, es gibt drei Seitenlängen mit [mm]a\le[/mm] b [mm]\le[/mm] c und
> maximalem Flächeninhalt des Dreiecks. Durch zyklisches
> Vertauschen der Beschriftungen hätte auch ein Dreieck mit
> den gleichen Seitenlängen und  [mm]b\le[/mm] c [mm]\le[/mm] a den gleichen
> maximalen Flächeninhalt. Daraus folgt [mm]a\le[/mm] b [mm]\le[/mm] c [mm]\le[/mm] a,
> was auf a=b=c führt.
>  Viele Grüße
>  Abakus
>  
>  

Demnach gilt
2s=a+a+a=3a  <=> s=3a/2
[mm] F=\wurzel(\bruch{3a}{2}*({\bruch{3a}{2}-a}^{3})) [/mm]
[mm] F_a=\bruch{\wurzel(3a)}{2} [/mm]
[mm] F_aa=\bruch{\wurzel(3)}{2} [/mm]
grad F=0 <=> [mm] \bruch{\wurzel(3a)}{2}=0 [/mm] <=> a=0

Das kann ja nicht sein oder?

Danke schonmal

matheja



Bezug
                        
Bezug
Extremwertaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 19:19 Fr 25.04.2008
Autor: MathePower

Hallo matheja,

> Danke abaskus für den Hinweis.
>  > Hallo,

>  >  angenommen, es gibt drei Seitenlängen mit [mm]a\le[/mm] b [mm]\le[/mm] c
> und
> > maximalem Flächeninhalt des Dreiecks. Durch zyklisches
> > Vertauschen der Beschriftungen hätte auch ein Dreieck mit
> > den gleichen Seitenlängen und  [mm]b\le[/mm] c [mm]\le[/mm] a den gleichen
> > maximalen Flächeninhalt. Daraus folgt [mm]a\le[/mm] b [mm]\le[/mm] c [mm]\le[/mm] a,
> > was auf a=b=c führt.
>  >  Viele Grüße
>  >  Abakus
>  >  
> >  

>
> Demnach gilt
>  2s=a+a+a=3a  <=> s=3a/2

> [mm]F=\wurzel(\bruch{3a}{2}*({\bruch{3a}{2}-a}^{3}))[/mm]
>  [mm]F_a=\bruch{\wurzel(3a)}{2}[/mm]
>  [mm]F_aa=\bruch{\wurzel(3)}{2}[/mm]
>  grad F=0 <=> [mm]\bruch{\wurzel(3a)}{2}=0[/mm] <=> a=0

>  
> Das kann ja nicht sein oder?

Ersetze s und a in der Ausgangsgleichung

[mm]F=\wurzel{s*\left(s-a\right)*\left(s-b\right)*\left(s-c\right)}[/mm]

durch

[mm]s=\bruch{1}{2}U[/mm] bzw. [mm]a=U-\left(b+c\right)[/mm]

Dann kommst Du auf das Ergebnis, welches meine Vorredner schon kundgetan hat.

>  
> Danke schonmal
>
> matheja
>  
>  

Gruß
MathePower

Bezug
                
Bezug
Extremwertaufgabe: Beweis (?)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:21 Fr 25.04.2008
Autor: Al-Chwarizmi


Hallo abakus,

deine Beweisführung scheint blendend einfach. Du brauchst nicht einmal die Heronsche Formel.
Aber wie sieht es aus, wenn wir anstatt des Dreiecks mit maximalem dasjenige mit minimalem Flächeninhalt suchen würden ? Deine Argumentation würde doch genau gleich funktionieren, oder?
Nun haben aber die Dreiecke D und D* mit den Seitenlängen  a=1, b=2, c=3 und a*=2, b*=3, c*=1 zwar den gleichen (minimalen) Flächeninhalt, nämlich  F=0, dennoch gilt nicht a=b=c !

viele Grüsse         al-Chwarizmi  

Bezug
                        
Bezug
Extremwertaufgabe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:06 Fr 25.04.2008
Autor: abakus


>
> Hallo abakus,
>  
> deine Beweisführung scheint blendend einfach. Du brauchst
> nicht einmal die Heronsche Formel.
>  Aber wie sieht es aus, wenn wir anstatt des Dreiecks mit
> maximalem dasjenige mit minimalem Flächeninhalt suchen
> würden ? Deine Argumentation würde doch genau gleich
> funktionieren, oder?

>  Nun haben aber die Dreiecke D und D* mit den Seitenlängen  
> a=1, b=2, c=3 und a*=2, b*=3, c*=1 zwar den gleichen
> (minimalen) Flächeninhalt, nämlich  F=0, dennoch gilt nicht
> a=b=c !
>  
> viele Grüsse         al-Chwarizmi    

Hallo,
du hast recht. Meine Argumentation greift erst dann, wenn wir einen Flächeninhalt größer als Null voraussetzen (was bei einem Maximum wiederum naheliegend ist).
Viele Grüße
Abakus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]