www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeExtremwertaufgabe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Extremwertprobleme" - Extremwertaufgabe
Extremwertaufgabe < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:26 Do 11.11.2010
Autor: Steffi2012

Aufgabe
Aufgabe 7)
Der Querschnitt eines Kanals ist ein Rechteck mit angesetztem Halbkreis. Wähle die Maße dieses Rechtecks so, dass bei gegebenem Umfang u des Querschnitts sein Flächeninhalt möglichst groß wird.

Hallo Leute!

Ich habe nur eine kurze Frage zur Aufgabe, da ich etwas nicht verstehe. Dort steht "Wähle die Maße dieses Rechtecks so, dass bei gegebenem Umfang u des Querschnitts sein Flächeninhalt möglichst groß wird."

Aber es ist doch kein Umfang gegeben, oder verstehe ich irgendwas falsch?

Den Flächeninhalt des gesamten Querschnitts:
[m]a * 2r + \bruch{\pi * r^2}{2}[/m]

Der Flächeninhalt des Rechtecks:
[m]a * 2r[/m]

Umfang des Querschnitts:
[m]U = \pi * r[/m]

Liebe Grüße!

        
Bezug
Extremwertaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 21:34 Do 11.11.2010
Autor: MathePower

Hallo Steffi2012,

> Aufgabe 7)
>  Der Querschnitt eines Kanals ist ein Rechteck mit
> angesetztem Halbkreis. Wähle die Maße dieses Rechtecks
> so, dass bei gegebenem Umfang u des Querschnitts sein
> Flächeninhalt möglichst groß wird.
>  Hallo Leute!
>  
> Ich habe nur eine kurze Frage zur Aufgabe, da ich etwas
> nicht verstehe. Dort steht "Wähle die Maße dieses
> Rechtecks so, dass bei gegebenem Umfang u des Querschnitts
> sein Flächeninhalt möglichst groß wird."
>  
> Aber es ist doch kein Umfang gegeben, oder verstehe ich
> irgendwas falsch?


Setze den Umfang allgemein an.


>  
> Den Flächeninhalt des gesamten Querschnitts:
>  [m]a * 2r + \bruch{\pi * r^2}{2}[/m]
>  
> Der Flächeninhalt des Rechtecks:
>  [m]a * 2r[/m]
>  
> Umfang des Querschnitts:
>  [m]U = \pi * r[/m]


Hier fehlt doch noch der Umfang des Rechtecks:

[mm]U=\pi*r+\blue{2*r+2*a}[/mm]


> Liebe Grüße!


Gruss
MathePower

Bezug
                
Bezug
Extremwertaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:06 Do 11.11.2010
Autor: Steffi2012

Hmm, ich habe irgendwo einen Denkfehler...

Extremalbedingung:
[m]A = a * 2r + \bruch{\pi*r^2}{2}[/m]

Nebenbedingung:
[m] U = \pi*r + 2r + 2a <=> U = -2,571*r = a[/m]
Ist die Auflösung nach a richtig??

Zielfunktion:
(ich setze a von der Nebenbedingung in die Extremalbedingung)
[m]-2,571*r * 2r + \bruch{\pi*r^2}{2}[/m]

Ist das soweit richtig? Wenn ja, dann kann man die Zielfunktion doch direkt nach r auflösen, oder? Aber eigentlichen bestimmen wir immer die Extremalwerte nachdem wir die Zielfunktion finden. Fällt das in diesem Falle weg?

Danke euch!

Steffi

Bezug
                        
Bezug
Extremwertaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 22:22 Do 11.11.2010
Autor: MathePower

Hallo Steffi2012,

> Hmm, ich habe irgendwo einen Denkfehler...
>
> Extremalbedingung:
>  [m]A = a * 2r + \bruch{\pi*r^2}{2}[/m]
>  
> Nebenbedingung:
>  [m]U = \pi*r + 2r + 2a <=> U = -2,571*r = a[/m]


Das soll wohl so heißen: [mm]U-2.571*r=a[/mm]

Das  ist nicht ganz richtig.

Richtig muß es lauten:

[mm]\bruch{U}{\red{2}}-\bruch{\pi+2}{2}*r=a[/mm]


>  Ist die
> Auflösung nach a richtig??


>  
> Zielfunktion:
>  (ich setze a von der Nebenbedingung in die
> Extremalbedingung)
>  [m]-2,571*r * 2r + \bruch{\pi*r^2}{2}[/m]
>  


> Ist das soweit richtig? Wenn ja, dann kann man die
> Zielfunktion doch direkt nach r auflösen, oder? Aber
> eigentlichen bestimmen wir immer die Extremalwerte nachdem
> wir die Zielfunktion finden. Fällt das in diesem Falle
> weg?


Nein.

Jetzt hast Du eine Zielfunktion, die nur noch von einer Variablen abhängig ist.

Von dieser Zielfunktion kannst Du jetzt  die Extrema bestimmen.


>  
> Danke euch!
>  
> Steffi


Gruss
MathePower

Bezug
                                
Bezug
Extremwertaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:50 Do 11.11.2010
Autor: Steffi2012

Okay, danke dir.
Das mit dem U habe ich wirklich vergessen.

Also bevor ich weiter mache und die Extrema berechne, möchte ich erstmal sichergehen um meine Zielfunktion überhaupt richtig ist.

Also a wird in die Extremalbedingung eingesetzt:

[m]A = (\bruch{U}{{2}}-\bruch{\pi+2}{2}\cdot{}r)*2r + \bruch{\pi*r^2}{2}[/m]
[m]<=> A = Ur-\bruch{\pi+2}{2}*2r^2 + \bruch{\pi*r^2}{2} [/m]
[m]<=> A = 2Ur - (\pi + 2)*2r^2 + \pi*r^2 [/m]
[m]<=> A = 2Ur - 2*r^2*\pi + 4*r^2 + \pi*r^2 [/m]
[m]<=> A = 2Ur + r^2 (-2*\pi + 4 +\pi)[/m]

Bezug
                                        
Bezug
Extremwertaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 07:06 Fr 12.11.2010
Autor: Steffi21

Hallo, das Auflösen der Klammern war nich erfolgreich


A(r) = [mm] (\bruch{u}{{2}}-\bruch{\pi+2}{2}\cdot{}r)\cdot{}2r [/mm] + [mm] \bruch{\pi\cdot{}r^2}{2} [/mm]

[mm] A(r)=(\bruch{u}{2}-\bruch{\pi*r}{2}-r)*2r+\bruch{1}{2}*\pi*r^2 [/mm]

[mm] A(r)=u*r-\pi*r^2-2*r^2+\bruch{1}{2}*\pi*r^2 [/mm]

Steffi



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]