www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeExtremwertaufgabe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Extremwertprobleme" - Extremwertaufgabe
Extremwertaufgabe < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:44 Do 01.11.2012
Autor: BlackClown

Aufgabe
Der Punkt P(u/v) liegt auf der Strecke [mm] \overline{QR}. [/mm] (Daneben ist eine Skizze, die leider nur im meinem Buch zu sehen ist). Für welches u wird der Flächeninhalt des eingezeichnet Rechtecks maximal ?
Gegeben : f(x) = -0,6x + 3

Ich hab die Aufgabe nun durchgerechnet, komme aber nicht auf die Lösung im Buch, sondern auf eine andere :

1.) Hauptbedingung : Fächeninhalt des Rechtecks : A = (4-u) [mm] \* [/mm] v

2.) Nebenbedingung : v = f(u)

3.) Zielfunktion : A = (4-u) [mm] \* [/mm] (0,6u+3) = [mm] 0,6u^{2} [/mm] -5,4 + 12

4.) Ableitung :
A'(u) = 1,2u - 5,4
A''(u) = 1,2

5.) Nullstellen/Extremwerte A'(u) = 0
0 = 1,2u - 5,4   | +5,4
5,4 = 1,2u         | :1,2
4,5 = u

Randwerte :
A(0) = 12
A(12) = -4,2

7.) Rückbezug

Bei u =4,5 wird der Flächeninhalt des Rechtecks maximal.




-----
Mein Problem :
Das Lösungsheft meiner Lehrerin sagt u=2,5.
Wo ist mein Fehler ?



und jetzt hätte ich noch ne Frage nebenbei (hoffe das ist in Ordnung) :

Wie kann ich so eine Aufgabe ausrechnen :

O = [mm] 2000x^{-2} [/mm] + [mm] 2\pi [/mm] r

Wie gehe ich an diese Aufgabe ran ?
Ich hoffe ihr könnt mir bei meinen beiden Problemen helfen ?

Danke im voraus :)

Liebe Grüße

        
Bezug
Extremwertaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 17:53 Do 01.11.2012
Autor: M.Rex

Hallo

> Der Punkt P(u/v) liegt auf der Strecke [mm]\overline{QR}.[/mm]
> (Daneben ist eine Skizze, die leider nur im meinem Buch zu
> sehen ist). Für welches u wird der Flächeninhalt des
> eingezeichnet Rechtecks maximal ?
>  Gegeben : f(x) = -0,6x + 3
>  Ich hab die Aufgabe nun durchgerechnet, komme aber nicht
> auf die Lösung im Buch, sondern auf eine andere :
>  
> 1.) Hauptbedingung : Fächeninhalt des Rechtecks : A =
> (4-u) [mm]\*[/mm] v
>  
> 2.) Nebenbedingung : v = f(u)

1 und 2 muss ich ohne die Skizze jetzt einfach mal als korrekt annehmen.

>  
> 3.) Zielfunktion : A = (4-u) [mm]\*[/mm] (0,6u+3) = [mm]0,6u^{2}[/mm] -5,4 +
> 12

Du hast hier falsch ausmultipliziert:
[mm] A(u)=(4-u)\cdot(0,6u+3)=2,4u-0,6u^{2}+12-3u=-0,6u^{2}-1,4+12 [/mm]

>
> 4.) Ableitung :
>  A'(u) = 1,2u - 5,4
>  A''(u) = 1,2
>  
> 5.) Nullstellen/Extremwerte A'(u) = 0
>  0 = 1,2u - 5,4   | +5,4
>  5,4 = 1,2u         | :1,2
>  4,5 = u
>  
> Randwerte :
>  A(0) = 12
>  A(12) = -4,2
>  
> 7.) Rückbezug
>  
> Bei u =4,5 wird der Flächeninhalt des Rechtecks maximal.


Dich hätte die Tatsache, dass deine Parabel nach unten offen ist, stutzig machen sollen, denn der Scheitelpunkt einer solchen Parabel ist der Tiefpunkt.

>  
>
>
>
> -----
>  Mein Problem :
>  Das Lösungsheft meiner Lehrerin sagt u=2,5.
>  Wo ist mein Fehler ?
>  
>
>
> und jetzt hätte ich noch ne Frage nebenbei (hoffe das ist
> in Ordnung) :
>  
> Wie kann ich so eine Aufgabe ausrechnen :
>  
> O = [mm]2000x^{-2}[/mm] + [mm]2\pi[/mm] r
>  
> Wie gehe ich an diese Aufgabe ran ?

Was willst du mit dieser Formel tun?


> Ich hoffe ihr könnt mir bei meinen beiden Problemen helfen
> ?
>  
> Danke im voraus :)

Marius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]