www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeExtremwertberechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Extremwertprobleme" - Extremwertberechnung
Extremwertberechnung < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:43 So 05.03.2006
Autor: Ninchen2000

Aufgabe
Ein gleichschenkeliges Trapez mit dem Böschungswinkel α=60° ist Querschnitt eines 100m langen Stollens mit der vorgegebenen Querschnittsfläche A. Wie sind die Abmessungen zu wählen, damit die Größe der (etwa mit Spritzbeton) zu befestigenden Wand- und Bodenflächen minimal wird?

Kann mir bei dieser Aufgabe bitte jemand helfen…ich komme echt nicht weiter. Ich bin mir schon bei der Hauptbedingung nicht sicher: genügt es wenn a+2b minimal sein muss. Oder geht es um die ganzen Flächen, also: 100.a+2.100.b muss minimal werden ???
Und dann hab ich noch ein Problem mit der Nebenbedingung: Vom Trapez hab ich eigentlich nur die Fläche und den Winkel gegeben. Aber ich hab keine Ahnung wie ich da eine Bedingung herleiten soll. Kann mir da jemand weiterhelfen????

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Extremwertberechnung: Hilfe zum Ansatz
Status: (Antwort) fertig Status 
Datum: 22:21 So 05.03.2006
Autor: chrisno

Hallo Ninchen2000,

minimal werden soll der Umfang des Trapezes, wenn auch die Decke unter "Wand und Bodenflächen" zählt. Andernfalls sind tatsächlich nur die Seitenwände und der Boden gemeint.
Durch die Vorgaben für das Trapez (Böschungswinkel und Symmetrie) ist es durch die Angabe von Höhe und Grundfläche festgelegt.
Also: Aus Höhe und Grundlinie kannst Du den Umfang ausrechnen, der minimal werden soll.

Die Nebenbedingung ist die Fläche des Trapezes. Auch die läßt sich anhand der Vorgaben aus Höhe und Grundlinie berechnen.

Die 100 m brauchst Du nicht.


Bezug
                
Bezug
Extremwertberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:14 Mo 06.03.2006
Autor: Ninchen2000

Hallo! Ich hab zu dieser Aufgabe noch eine weitere Frage. Also Hauptbedingung und Nebenbedingung ist mir klar. Wenn die HB, der Umfang des Trapezes ist, dann habe ich: U=a+2b+c   Es geht jetzt also darum b und c durch a=der Grundkante und h=der Höhe auszudrücken. Aber wie??? Ich komme einfach nicht drauf, vielleicht sehe ich es einfach nicht.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Bezug
                        
Bezug
Extremwertberechnung: Skizze + Winkelfunktionen
Status: (Antwort) fertig Status 
Datum: 13:43 Mo 06.03.2006
Autor: Roadrunner

Hallo Ninchen!


Bitte stelle auch Rückfragen zu bestehenden Aufgaben auch im entsprechenden Thread. Danke.


Zunächst einmal sollte man sich eine Skizze machen und die entsprechenden Größen eintragen:

[Dateianhang nicht öffentlich]


Dann kannst Du die Winkelfunktionen verwenden, da Du ja einen Winkel im rechtwinkligen Dreieck mit [mm] $\alpha [/mm] \ = \ 60°$ gegeben hast.

Ich würde hier alle Größen in Abhängigkeit von $b_$ ermitteln.

[mm] $\sin(60°) [/mm] \ = \ [mm] \bruch{h}{b}$ $\gdw$ [/mm]   $h \ = \ [mm] b*\sin(60°) [/mm] \ = \ [mm] b*\bruch{1}{2}*\wurzel{3}$ [/mm]

[mm] $\cos(60°) [/mm] \ = \ [mm] \bruch{\Delta}{b}$ $\gdw$ $\Delta [/mm] \ = \ [mm] b*\cos(60°) [/mm] \ = \ [mm] b*\bruch{1}{2}$ [/mm]

$c \ = \ [mm] a+2*\Delta$ [/mm]

Damit wird für den Umfang:

$U \ = \ a+2*b+c \ = \ [mm] a+2*b+a+2*\Delta [/mm] \ = \ [mm] 2*(a+b+\Delta) [/mm] \ = \ [mm] 2*\left(a+b+b*\bruch{1}{2}\right) [/mm] \ = \ 2a+3b$


Und aus der Flächenformel können wir nun die letzte Variable ersetzen bzw. ermitteln und in die Zielfunktion (= Hauptbedingung) einsetzen:

$A \ = \ [mm] \bruch{a+c}{2}*h [/mm] \ = \ [mm] \bruch{a+(a+2*\Delta)}{2}*h [/mm] \ = \ [mm] (a+\Delta)*h [/mm] \ = \ [mm] \left(a+b*\bruch{1}{2}\right)*b*\bruch{1}{2}*\wurzel{3} [/mm] \ = \ ...$


Gruß vom
Roadrunner


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]