www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisExtremwerte
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Extremwerte
Extremwerte < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwerte: Frage
Status: (Frage) beantwortet Status 
Datum: 22:37 Do 02.06.2005
Autor: Phobos

Hallo. Ich habe Probleme mit folgender Aufgabe:

Es sei [mm] a_k \in \IR^n [/mm] und g: [mm] \IR^n [/mm] -> [mm] \IR [/mm] sei definiert durch g(x) = [mm] \summe_{k=1}^{p} \parallel x-a_k\parallel^2 [/mm] , wobei [mm] \parallel *\parallel [/mm] die euklidische Norm bezeichne. Zeigen sie, daß g ein globales Minimum besitzt und berechnen sie die Stelle, an der es angenommen wird.

Klingt ja eigentlich nicht so kompliziert. Ich dachte ich leite mal fröhlich ab und schau nach wo die Ableitung null ist:
g'(x) = [mm] \summe_{k=1}^{p} 2\parallel x-a_k\parallel [/mm]
Tja. Wird leider nirgendwo null. Wo ist mein denkfehler? Kann ich das vielleicht nicht so ableiten?
Und gilt [mm] \summe_{k=1}^{p} \parallel x-a_k\parallel^2 [/mm] = [mm] \summe_{k=1}^{p} \summe_{i=1}^{n} |x_i-a_k_i|^2 [/mm] ?

        
Bezug
Extremwerte: globales minimum
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:41 Fr 03.06.2005
Autor: RePete

Hallo Phobos,

wenn ich mich recht entsinne muß ein globales Minimum nicht unbedingt eine lokales Minimum sein. Globales Minimum bezeichnet nur den kleinsten Funktionswert den eine Funktion in einem Intervall oder auch in ihrem Definitionsbereich besitzt. Vielleicht solltest du da nochmal ansetzen. Mit einer konkreten Lösung kann ich dir heute Abend leider auch nicht weiter helfen. Aber vielleicht hab ich am Wochenende nochmal Zeit...

mfG Peter

Bezug
                
Bezug
Extremwerte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:25 Fr 03.06.2005
Autor: Phobos

Hm. Gute Idee. Wie bei f(x)=|x|. Hat ja auch kein Minimum in (0,0), aber trotzdem den kleinsten Funktionswert.

Bezug
        
Bezug
Extremwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 11:07 Fr 03.06.2005
Autor: banachella

Hallo!

Du solltest benutzen, das [mm] $\bruch{\partial}{\partial x_j}\summe_{k=1}^p \|x-a_k\|^2=2\summe_{k=1}^p(x_j-a_{kj})$ [/mm] ist...
Als Ableitung bekommst du keine Funktion von [mm] $\IR^n$ [/mm] nach [mm] $\IR$, [/mm] sondern eine Funktion von [mm] $\IR^n$ [/mm] nach [mm] $\IR^n$. [/mm] Anders ausgedrückt: Deine gesuchte Ableitung ist ein Vektor...

Gruß, banachella

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]