www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisExtremwerte Funtion 5en Grades
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Schul-Analysis" - Extremwerte Funtion 5en Grades
Extremwerte Funtion 5en Grades < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwerte Funtion 5en Grades: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:44 Mi 01.09.2004
Autor: Disap

Folgende Ableitung:
0,6 [mm] x^{5}+0,6 x^{2} [/mm]


wie kann ich nun die Extrempunkte berechnen? Ausklammern ist nicht die Lösong :(


und vor allem, wie bekomme ich dann die Wendestellen?

        
Bezug
Extremwerte Funtion 5en Grades: Antwort
Status: (Antwort) fertig Status 
Datum: 16:55 Mi 01.09.2004
Autor: adrianempen

also: was ist die ürsprungsgleichung und was hast du denn bisher schon so versucht?

Bezug
                
Bezug
Extremwerte Funtion 5en Grades: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:35 Mi 01.09.2004
Autor: Disap


> also: was ist die ürsprungsgleichung

Die ist unwichtig, die braucht man dazu nicht.

> und was hast du denn bisher schon so versucht?

Da das mit dem Ausklammern richtig war, musste das auch nicht wissen
außerdem hättest du mir das auch so sagen können und nicht erst irgendwelche sinnlosen Fragen stellen

Bezug
        
Bezug
Extremwerte Funtion 5en Grades: Antwort
Status: (Antwort) fertig Status 
Datum: 17:10 Mi 01.09.2004
Autor: Marc

Hallo Disap!

> Folgende Ableitung:
>  0,6 [mm]x^{5}+0,6 x^{2} [/mm]
>  
>
> wie kann ich nun die Extrempunkte berechnen? Ausklammern
> ist nicht die Lösong :(

Wieso ist Ausklammern nicht die Lösung:

$ [mm] 0,6x^{5}+0,6 x^{2}=0$ [/mm]
[mm] $\gdw$ [/mm] $ [mm] 0,6*x^2*(x^{3}+1)=0$ [/mm]
[mm] $\gdw$ $0,6*x^2=0$ [/mm] oder [mm] $x^{3}+1=0$ [/mm]
[mm] $\gdw$ $x^2=0$ [/mm] oder [mm] $x^{3}=-1$ [/mm]
[mm] $\gdw$ $x_1=0$ [/mm] oder [mm] $x_2=-1$ [/mm]

Beachte, dass dies erst Kandidaten für Extremmstellen sind, du mußt noch die hinreichende Bedingung [mm] ($f''(x_e)\not=0$) [/mm] überprüfen.

> und vor allem, wie bekomme ich dann die Wendestellen?

Indem du die erste Ableitung erneut ableitest, und diese 2. Ableitung dann gleich Null setzt.

Probier' es mal selbst und melde dich mit deinen Versuchen/Ergebnissen.

Viele Grüße,
Marc


Bezug
                
Bezug
Extremwerte Funtion 5en Grades: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:32 Mi 01.09.2004
Autor: Disap

Vielen Dank :)
aber auf die Wendestellen komme ich trotzdem nicht :(
Habe es auch mit ausklammern probiert
f''(x) = [mm] 3x^{4}+1,2x [/mm]

das dann ausgeklammert:
[mm] x(3x^{3}+1,2) [/mm]

und das ist falsch, so siehts jedenfalls aus

Bezug
                        
Bezug
Extremwerte Funtion 5en Grades: Antwort
Status: (Antwort) fertig Status 
Datum: 21:06 Mi 01.09.2004
Autor: e.kandrai

Wieso "und das ist falsch, so siehts jedenfalls aus" ??? Ein wenig mehr Selbstvertrauen, bitteschön ;-)

Das ist bis jetzt vollkommen richtig:

[mm]f''(x)=0 <=> x*(3x^3+1,2)=0[/mm]

Und jetzt das "Das Produkt mehrere Faktoren wird [mm]=0[/mm], wenn einer der Faktoren [mm]=0[/mm] wird" - Kriterium. Das heißt hier: die 2. Ableitung wird Null, wenn entweder der 1. Faktor [mm]x[/mm] gleich Null wird, oder der 2. Faktor [mm]3x^3+1,2[/mm] gleich Null wird.

Achtung, Falle: seit Jahren lernt ihr in der Schule, dass die Gleichung [mm]x^2+1=0[/mm] keine Lösung hat, da man aus ner negativen Zahl (nach dem Umstellen heißt's ja [mm]x^2=-1[/mm]) keine Wurzel ziehen kann. Stimmt nur teilweise! Aus negativen Zahlen kann man im Reellen keine gerade Wurzel ziehen, ungerade Wurzeln gehen problemlos.

Beispiel:  [mm]x^3+8=0[/mm]  <=>  [mm]x^3=-8[/mm]  <=>  [mm]x=-2[/mm]

Probier's aus: [mm]x=-2[/mm] ist ne "echte" Lösung der Gleichung, da [mm](-2)^3=(-2)*(-2)*(-2)=-8[/mm] ist.

Vorsicht: manche (ältere) Taschenrechner geben dir auch dann nen Error raus, wenn du eine ungerade Wurzel einer negativen Zahl ziehen willst - sowas einfach ignorieren, von der positiven Zahl die ungerade Wurzel ziehen, und beim Hinschreiben der Lösung einfach das Minus davorsetzen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]