www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenExtremwerte bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Extremwerte bestimmen
Extremwerte bestimmen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwerte bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:29 Di 06.07.2010
Autor: dynaDE

Aufgabe
Alle extremwerte der Funktion z = f(x,y) = [mm] x^3 [/mm] + [mm] y^2 [/mm] + 2xy - [mm] 3x^2 [/mm] -137 bestimmen.

Hallo, ich habe einige Probleme in der Vorgehensweise.

Als erstes würde ich partiell ableiten.

[mm] \bruch{\partial f}{\partial x} [/mm] = [mm] 3x^2 [/mm] + 2y - 6x

und

[mm] \bruch{\partial f}{\partial y} [/mm] =  2y + 2x

Für Extremwerte gelten ja folgende Bedingungen.

[mm] f_x(x_0,y_0) [/mm] = 0
[mm] f_y(x_0,y_0) [/mm] = 0

Sowie die hinreichende Bedingung:
[mm] \nabla [/mm] = [mm] f_x_x(x_0,y_0) [/mm] * [mm] f_y_y(x_0,y_0) [/mm] - [mm] f^2_x_y(x_0,y_0) [/mm] > 0


Was muss ich nun machen?

Vielen Dank schonmal!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Extremwerte bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:36 Di 06.07.2010
Autor: schachuzipus

Hallo dynaDE,

> Alle extremwerte der Funktion z = f(x,y) = [mm]x^3[/mm] + [mm]y^2[/mm] + 2xy
> - [mm]3x^2[/mm] -137 bestimmen.
>  Hallo, ich habe einige Probleme in der Vorgehensweise.
>  
> Als erstes würde ich partiell ableiten.

Ja!

>  
> [mm]\bruch{\partial f}{\partial x}[/mm] = [mm]3x^2[/mm] + 2y - 6x [ok]
>
> und
>  
> [mm]\bruch{\partial f}{\partial y}[/mm] =  2y + 2x [ok]
>
> Für Extremwerte gelten ja folgende Bedingungen.
>  
> [mm]f_x(x_0,y_0)[/mm] = 0
> [mm]f_y(x_0,y_0)[/mm] = 0 [ok]
>
> Sowie die hinreichende Bedingung:
>  [mm]\nabla[/mm] = [mm]f_x_x(x_0,y_0)[/mm] * [mm]f_y_y(x_0,y_0)[/mm] -
> [mm]f^2_x_y(x_0,y_0)[/mm] > 0
>
>
> Was muss ich nun machen?

Löse erstmal das Gleichungssystem mit den partiellen Ableitungen, das liefert dir die sog. stationären Punkte, an denen Extrema vorliegen können.

Dazu schreibe die zweite Gleichung mal als $2(x+y)=0$, also $x=-y$

Damit in die andere und du bekommst zwei stationäre Punkte

[mm] $(x_1,y_1), (x_2,y_2)$ [/mm]

Dann stelle die Hessematrix auf und werte diese an den stat. Punkten aus.

Das gibt dir Aufschluss, ob ein Extremum vorliegt und wenn ja, welcher Art es ist.

Dazu musst du die Hessematrix auf Definitheit untersuchen.

Gruß

schachuzipus

>  
> Vielen Dank schonmal!
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]