www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenExtremwertkandidaten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Extremwertkandidaten
Extremwertkandidaten < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertkandidaten: Korrektur
Status: (Frage) beantwortet Status 
Datum: 19:38 Do 05.07.2012
Autor: Hejo

Aufgabe
Bestimmen Sie nach der Multiplikatorenregel von Lagrange alle Punkte, die für die gegebenen Funktionen unter den jeweiligen Nebenbedingungen als Extremalpunkte in Frage kommen.
[mm] a)z=x^2+y^2, [/mm] mit [mm] (x-2)^2+y^2-9=0 [/mm]
b)z= [mm] 2x^2+y^2, [/mm] mit [mm] x-y^2+1=0 [/mm]

Hi,
zu a)
[mm] Z(x;y;\lambda)=x^2+y^2-\lambda((x-2)^2+y^2-9) [/mm]
[mm] Z_x=2x-\lambda(2x-4)=0 [/mm]
[mm] Z_y=2y-\lambda2y=0 [/mm]
[mm] Z_\lambda=-((x-2)^2+y^2-9)=0=(x-2)^2+y^2-9=0 [/mm]

hier folgt aus der Gleichung [mm] Z_x=2x-\lambda(2x-4)=0, [/mm] dass [mm] \lambda=\frac{2x}{2x-4}. [/mm] das ist nicht lösbar.
In der Lösung des Tutoriums stehen aber die Lösungen [mm] P_1(5;0) [/mm] und [mm] P_2(-1;0). [/mm]

Hab ich mich hier irgendwo verrechnet?

zu b)
[mm] Z(x;y;\lambda)=2x^2+y^2-\lambda(x-y^2+1) [/mm]
[mm] Z_x=4x-\lambda=0 [/mm]
[mm] Z_y=2y+2y\lambda=0 [/mm]
[mm] Z_\lambda=-x+y^2-1=0 [/mm]

Aus [mm] Z_x [/mm] folgt [mm] \lambda=4x [/mm]
Aus [mm] Z_y [/mm] folgt [mm] \lambda=-1 [/mm] und damit [mm] x=-\frac{1}{4} [/mm]
Aus [mm] Z_\lambda [/mm] folgt [mm] y=\pm\sqrt(x+1)=\pm\frac{\sqrt(3)}{2} [/mm]

Extremwertkandidaten sind somit [mm] P_1(-\frac{1}{4};\frac{\sqrt(3)}{2}) [/mm] und [mm] P_2(-\frac{1}{4};-\frac{\sqrt(3)}{2}) [/mm]

Auch hier steht in der Lösung noch [mm] P_3(-1;0)... [/mm]

Auch auf diese Lösung komme ich nicht! Hat jemand eine idee??

        
Bezug
Extremwertkandidaten: Antwort
Status: (Antwort) fertig Status 
Datum: 19:55 Do 05.07.2012
Autor: MathePower

Hallo Hejo,

> Bestimmen Sie nach der Multiplikatorenregel von Lagrange
> alle Punkte, die für die gegebenen Funktionen unter den
> jeweiligen Nebenbedingungen als Extremalpunkte in Frage
> kommen.
>  [mm]a)z=x^2+y^2,[/mm] mit [mm](x-2)^2+y^2-9=0[/mm]
>  b)z= [mm]2x^2+y^2,[/mm] mit [mm]x-y^2+1=0[/mm]
>  Hi,
>  zu a)
>  [mm]Z(x;y;\lambda)=x^2+y^2-\lambda((x-2)^2+y^2-9)[/mm]
>  [mm]Z_x=2x-\lambda(2x-4)=0[/mm]
>  [mm]Z_y=2y-\lambda2y=0[/mm]
>  [mm]Z_\lambda=-((x-2)^2+y^2-9)=0=(x-2)^2+y^2-9=0[/mm]
>  
> hier folgt aus der Gleichung [mm]Z_x=2x-\lambda(2x-4)=0,[/mm] dass
> [mm]\lambda=\frac{2x}{2x-4}.[/mm] das ist nicht lösbar.


Setze dieses [mm]\lambda[/mm]  in [mm]Z_{y}=0[/mm] ein.
Aus dieser Gleichung folgt die Lösung für eine Variable.

Setze diese Lösung in [mm]Z_{\lambda}=0[/mm] ein.
und ermittle den Wert der anderen Variablen.


> In der Lösung des Tutoriums stehen aber die Lösungen
> [mm]P_1(5;0)[/mm] und [mm]P_2(-1;0).[/mm]
>
> Hab ich mich hier irgendwo verrechnet?
>  
> zu b)
>  [mm]Z(x;y;\lambda)=2x^2+y^2-\lambda(x-y^2+1)[/mm]
>  [mm]Z_x=4x-\lambda=0[/mm]
>  [mm]Z_y=2y+2y\lambda=0[/mm]
>  [mm]Z_\lambda=-x+y^2-1=0[/mm]
>  
> Aus [mm]Z_x[/mm] folgt [mm]\lambda=4x[/mm]
>  Aus [mm]Z_y[/mm] folgt [mm]\lambda=-1[/mm] und damit [mm]x=-\frac{1}{4}[/mm]
>  Aus [mm]Z_\lambda[/mm] folgt [mm]y=\pm\sqrt(x+1)=\pm\frac{\sqrt(3)}{2}[/mm]
>  
> Extremwertkandidaten sind somit
> [mm]P_1(-\frac{1}{4};\frac{\sqrt(3)}{2})[/mm] und
> [mm]P_2(-\frac{1}{4};-\frac{\sqrt(3)}{2})[/mm]
>  
> Auch hier steht in der Lösung noch [mm]P_3(-1;0)...[/mm]
>  
> Auch auf diese Lösung komme ich nicht! Hat jemand eine
> idee??


Aus [mm]Z_{y}=0[/mm] folgen 2 Fälle:

i) [mm]\lambda+1=0[/mm]
ii) y=0

Der erste Fall ist schon behandelt worden,
bleibt noch der Fall ii).

Aus diesem folgt dann der Punkt [mm]P_{3}[/mm].


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]