www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeExtremwertproblem
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Extremwertprobleme" - Extremwertproblem
Extremwertproblem < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertproblem: Tipp
Status: (Frage) beantwortet Status 
Datum: 17:20 Mo 11.01.2010
Autor: coucou

Aufgabe
Der Querschnitt eines unterirdischen Entwässerungskanals ist ein Rechteck mit aufgesetztem Halbkreis.
Wie sind Breite und Höhe des Rechtsecks zu wählen, damit dei Querschnittsfläche 8m² groß ist und zur Ausmauerung des Kanals möglichst wenig Material benötigt wird?

Hallo!

Ich hab mir erstmal überlegt, dass die Formal für den Querschnitt
A= a * b + 1/2 Pi r² = 8 sein muss.

Dann habe ich mir nur den Halbkreis in ein Koordinatensystem gemalt und somit f(0) = r, f( -1/2a) = 0 und f(1/2 a) = 0
Die Formal für die Funktion müsste cx² + d sein, somit also c* -1/2 a + d oder das Ganze mit 1/2 a.
Stellt man die Gleichung für den kompletten Querschnitt (siehe Anfang) nach r um, erhält man für r [mm] \wurzel{(16-2ab): (Pi)} [/mm]
Also erhält man f(x)= 1/2a -  [mm] \wurzel{(16-2ab): (Pi)} [/mm] * (1/2 a)² - [mm] \wurzel{(16-2ab): (Pi)} [/mm]

Diesen Term müsste ich nun auf ein Maximum untersuchen und das wäre mein Punkt r oder? Und wie rechne ich dann weiter?

Vielen Danke,
lg
coucou

        
Bezug
Extremwertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 17:30 Mo 11.01.2010
Autor: abakus


> Der Querschnitt eines unterirdischen Entwässerungskanals
> ist ein Rechteck mit aufgesetztem Halbkreis.
>  Wie sind Breite und Höhe des Rechtsecks zu wählen, damit
> dei Querschnittsfläche 8m² groß ist und zur Ausmauerung
> des Kanals möglichst wenig Material benötigt wird?
>  Hallo!
>  
> Ich hab mir erstmal überlegt, dass die Formal für den
> Querschnitt
>  A= a * b + 1/2 Pi r² = 8 sein muss.

Hallo,
möglichst wenig Material bedeutet einen möglichst kleinen Umfang.
Du hast im Ansatz gleich 3 Variablen, das ist eindeutig zu viel.
Der Radius r ist nichts anderes als a/2 (falls a die Breite ist)
Der Umfang (deine Zielfunktion) berechnet sich aus a, zweimal b und dem Halbkreis mit dem Radius a/2.
Damit hängt u von a und b ab.
Die Nebenbedingung [mm] 8=ab+0,5\pi*(a/2)^2 [/mm] kannst du nach b umstellen und somit b in der Zielfunktion durch diesen umgestellten Term ersetzen.
Gruß Abakus



>  
> Dann habe ich mir nur den Halbkreis in ein
> Koordinatensystem gemalt und somit f(0) = r, f( -1/2a) = 0
> und f(1/2 a) = 0
>  Die Formal für die Funktion müsste cx² + d sein, somit
> also c* -1/2 a + d oder das Ganze mit 1/2 a.
>  Stellt man die Gleichung für den kompletten Querschnitt
> (siehe Anfang) nach r um, erhält man für r
> [mm]\wurzel{(16-2ab): (Pi)}[/mm]
>  Also erhält man f(x)= 1/2a -  
> [mm]\wurzel{(16-2ab): (Pi)}[/mm] * (1/2 a)² - [mm]\wurzel{(16-2ab): (Pi)}[/mm]
>  
> Diesen Term müsste ich nun auf ein Maximum untersuchen und
> das wäre mein Punkt r oder? Und wie rechne ich dann
> weiter?
>  
> Vielen Danke,
> lg
>  coucou


Bezug
                
Bezug
Extremwertproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:44 Mo 11.01.2010
Autor: coucou

Dann habe ich aber als Zielfunktion
f(x)= 2 *  [mm] \bruch{8-1/8 Pi * a^2}{a} [/mm] + a + 1/8 Pi * a²

Kann man den noch irgendwie umstellen oder so? Sodass man eine Ableitungen bilden kann, um den Extrempunkt zu finden?

LG,
coucou

Bezug
                        
Bezug
Extremwertproblem: Nachfragen
Status: (Antwort) fertig Status 
Datum: 17:57 Mo 11.01.2010
Autor: informix

Hallo coucou,

> Dann habe ich aber als Zielfunktion
> f(x)= 2 *  [mm]\bruch{8-1/8 Pi * a^2}{a}[/mm] + a + 1/8 Pi * a²

1. die Variable heißt doch "a" und nicht x !! [verwirrt]

2. Schreibe die Hochzahlen nie mit dem Tastaturkürzel sondern stets als a^2 und mache keine Leerzeichen in die Formeln, dann werden sie "schöner" übersetzt..

3. [mm] f(a)=2*\bruch{8-\bruch{1}{8} \pi * a^2}{a}+a+\bruch{1}{8}*\pi*a^2 [/mm] [<-- klick]
jetzt fasse mal zusammen bzw. löse den Bruch so auf, dass du einzelne Summanden bekommst.

Schließlich: wie bist du denn auf diese Formel gekommen?

>  
> Kann man den noch irgendwie umstellen oder so? Sodass man
> eine Ableitungen bilden kann, um den Extrempunkt zu
> finden?
>  
> LG,
>  coucou


Gruß informix

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]