www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeExtremwertproblem: Pyramide
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Extremwertprobleme" - Extremwertproblem: Pyramide
Extremwertproblem: Pyramide < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertproblem: Pyramide: wie zu lösen? ansatz
Status: (Frage) beantwortet Status 
Datum: 16:27 Fr 19.11.2004
Autor: kokow

Alos, ich habe bei folgender Aufgabe Probleme:

Welche senkrechte, regelmäßige Pyramide mit einem Quadrat der Seitenlänge a als Grundfläche und der Seitenkante s hat den größten Inhalt?

Mein Problem liegt aauch daran, dass man nicht mit konkreten Zahlen arbeiten kann!
Wüsste gerne wie die Zielfunktion lautet und wie man danach weiterrechnet.
Ansatz: Zielfunktion:  V(h)= [mm] \bruch{1}{3} [/mm] * ( [mm] \bruch{s^2}{2} [/mm] -  [mm] \bruch{h^2}{2} [/mm] ) * h

danke leuts

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Extremwertproblem: Pyramide: Hilfe
Status: (Antwort) fertig Status 
Datum: 17:25 Fr 19.11.2004
Autor: Fugre


> Alos, ich habe bei folgender Aufgabe Probleme:
>  
> Welche senkrechte, regelmäßige Pyramide mit einem Quadrat
> der Seitenlänge a als Grundfläche und der Seitenkante s hat
> den größten Inhalt?
>  
> Mein Problem liegt aauch daran, dass man nicht mit
> konkreten Zahlen arbeiten kann!
>  Wüsste gerne wie die Zielfunktion lautet und wie man
> danach weiterrechnet.
>  Ansatz: Zielfunktion:  V(h)= [mm]\bruch{1}{3}[/mm] * (
> [mm]\bruch{s^2}{2}[/mm] -  [mm]\bruch{h^2}{2}[/mm] ) * h
>  

Ob die Funktion richtig ist, kann ich dir leider nicht sagen, da ich nicht weiß, wie du darauf kommst.


> danke leuts
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
>  

Hallo Kokow,

na dann fangen wir mal an.

Wir können ja mal die Zielfunktion bauen:
Für alle Pyramiden gilt als allgemeine Formel $V= [mm] \bruch{1}{3}Gh$ [/mm] .
Jetzt modifizieren wir diese Formel nach unserem Interesse. G ersetzen wir schon, denn wir wissen, dass für die Grundfläche
gilt [mm] $G=a^2$ [/mm] , also schreiben wir
$ [mm] V=\bruch{1}{3}a^2h$ [/mm]
Das sieht nun schon viel besser aus, aber das blöde h stört uns noch, da wir es absolut nicht kennen.
Aus diesem Grund überlegen wir, in welcher Verbindung das h zu den uns "bekannten" Variablen a und s steht.

Um uns den Zusammenhang anschaulich zu machen, gucken wir uns den Querschnitt entlang der Seitenkante
s an. Die entstandene Querschnittsfläche ist ein gleichschenkliges Dreick mit
den Schenkeln s, der Höhe h und einer Grundseite, die der Diagonalen in unserer
Grundfläche G entspricht. Wenn du jetzt noch das gleichschenklige Dreieck in 2
rechtwinklige mit der Hypothenus s unterteilst, dann kannst du h in Abhängigkeit von
den dir bekannten Variablen setzen. Damit ist deine Funktion dann komplett und du
musst nur noch etwas diskutieren.

Aus deiner Aufgabenstellung können wir leider nicht entnehmen ob a oder s die
Funktionsvariable ist, deshalb kann ich dir auch hier nicht mehr weiterhelfen und dir
ein Kontrollergebnis nennen. Für die Zukunft wäre es ratsam die Aufgabenstellung so
eindeutig wie möglich zu machen, damit wir dir gut helfen können.


Ich hoffe, dass ich dir helfen konnte. Sollte etwas unklar bleiben, so frag bitte nach.

Liebe Grüße
Fugre


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]