www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPrädikatenlogikFO-Formel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Prädikatenlogik" - FO-Formel
FO-Formel < Prädikatenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Prädikatenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

FO-Formel: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:59 Mo 15.06.2009
Autor: Wimme

Aufgabe
Betrachte [mm] \alpha [/mm] := [mm] (\mathbb N,+,\cdot,0,1,R) [/mm] mit einstelligem Relationssymbol R.
Gebe für folgende Probleme eine Formel in [mm] FO(\{+,\cdot,0,1,R\}) [/mm] an.

a) die 17-te Ziffer von rechts der Binärdarstellung von x ist eine 0
b) [mm] R^{\alpha} [/mm] ist unendlich

Hi!

Also zu a) habe ich folgende Idee:
a) [mm] \exists x_1 \dots \exists x_n [/mm] ( [mm] \mbox{für alle z aus x_i gilt, dass z=1 oder z=0} \wedge \summe_{i=1}^{n}{x_i \cdot 2^{i-1}} [/mm] = x [mm] \wedge x_{17}=0) [/mm]

Das ausformulierte würde ich natürlich noch in eine Formel packen. Darf ich denn überhaupt das Summenzeichen verwenden? Und wenn ich am Ende [mm] x_{17}=0 [/mm] fordere, dann bedeutet das implizit auch, dass ich am Anfang die Existenz von mind. 17 Variablen gefordert habe, oder?
Bzw. darf ich einfach die Existenz einer unbestimmten Menge von Variablen fordern?

Ich will erstmal nur wissen, ob das vom Prinzip her so geht. Die genaue Umsetzung werde ich mir dann später überlegen.

b) Hier habe ich leider gar keine Idee. Wie drückt man denn aus, das etwas unendlich ist? Dass es irgendwie immer noch eine Zahl gibt, die man noch nicht hatte, und die auch R erfüllt? Wie macht man das?


Herzlichen Dank und schönen Tag noch!
Wimme

        
Bezug
FO-Formel: zu a)
Status: (Antwort) fertig Status 
Datum: 13:30 Di 16.06.2009
Autor: moudi

Hallo Wimme

zu a) Man kann nicht eine unbestimmte Anzahl von Variablen fordern, die Variable n ist also unzulaessig.
Sie ist aber auch nicht noetig. Uebrigens gehoert die 17.Ziffer von rechts zur Potenz [mm] $2^{16}$ [/mm]

Meine Formel waere

[mm] $\exists x_0\exists x_1\dots\exists x_{16} \exists x_{17} \bigl(x=2^{17} x_{17}+2^{16}x_{16} +\dots+2x_1+x_0 \wedge (x_0=0 \vee x_0=1) \wedge (x_1=0 \vee x_1=1) \wedge \dots \wedge (x_{15}=0\vee x_{15}=1) \wedge x_{16}=1\bigr)$ [/mm]

bei b) weiss ich nicht, was gemeint ist

mfG Moudi


Bezug
        
Bezug
FO-Formel: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Fr 26.06.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Prädikatenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]