FT eines Cauchy Problems < Fourier-Transformati < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Gegeben Sei das Cauchy-Problem
[mm] u_{tt}-u_{xx}=0, [/mm] u(0,x)=f(x), [mm] u_{t}(0,x)=0, [/mm] x [mm] \in \IR, [/mm] t>0
Lösen Sie dieses durch Anwendung der partiellen Fouriertransformation! |
Halli Hallo
Ich bin gerade dabei mich mit der Fouriertransformation auseinander zu setzen. Das wesen und der Grundlegende Gedanke warum man das macht ist mir klar. Und auch das man sich hier z.B, an bestimmte Rechenregeln zu halten hat. Nur wie fang ich an. ich weiß dass die FT ganz allg. so aussieht.
[mm] F_{x}(f(x,y))(\nu,y)=\bruch{1}{\wurzel{2\pi}}\integral_{-\infty}^{\infty}{e^{-ix\nu}f(x,y) dx}
[/mm]
So und da es sich hier um eine partielle FT handelt muss ich trotzdem zum einen die Zeitabhängigkeit transformieren und zum anderen die Ortsabhängigkeit. Bloß weiß ich da nicht wie genau ich das machen soll, bzw. wie man bei der Aufgabe anfängt und dann erst mal die Lösung für das Bildproblem zu bekommen. Geschweige denn die Rücktransformation, die sich ja in den meisten Fällen sehr schwierig gestalltet.
Ich ersuche also hiermit dringend Hilfe. ^____^ Wer kann mir hier weiterhelfen?
lg Madlen
|
|
|
|
Hallo Leni-chan,
> Gegeben Sei das Cauchy-Problem
>
> [mm]u_{tt}-u_{xx}=0,[/mm] u(0,x)=f(x), [mm]u_{t}(0,x)=0,[/mm] x [mm]\in \IR,[/mm] t>0
>
> Lösen Sie dieses durch Anwendung der partiellen
> Fouriertransformation!
> Halli Hallo
>
> Ich bin gerade dabei mich mit der Fouriertransformation
> auseinander zu setzen. Das wesen und der Grundlegende
> Gedanke warum man das macht ist mir klar. Und auch das man
> sich hier z.B, an bestimmte Rechenregeln zu halten hat. Nur
> wie fang ich an. ich weiß dass die FT ganz allg. so
> aussieht.
>
> [mm]F_{x}(f(x,y))(\nu,y)=\bruch{1}{\wurzel{2\pi}}\integral_{-\infty}^{\infty}{e^{-ix\nu}f(x,y) dx}[/mm]
>
> So und da es sich hier um eine partielle FT handelt muss
> ich trotzdem zum einen die Zeitabhängigkeit transformieren
> und zum anderen die Ortsabhängigkeit. Bloß weiß ich da
> nicht wie genau ich das machen soll, bzw. wie man bei der
> Aufgabe anfängt und dann erst mal die Lösung für das
> Bildproblem zu bekommen. Geschweige denn die
> Rücktransformation, die sich ja in den meisten Fällen
> sehr schwierig gestalltet.
Nun, partielle Fouriertransformation heißt doch nur
daß bezüglich der Ortskoordinaten transformiert werden muß.
>
> Ich ersuche also hiermit dringend Hilfe. ^____^ Wer kann
> mir hier weiterhelfen?
>
> lg Madlen
Gruss
MathePower
|
|
|
|