Fadenpendel < Physik < Naturwiss. < Vorhilfe
|
Aufgabe | Bestimme die Schwingungsdauer eines Fadenpendels mit Hilfe des Energieerhaltungssatzes. (Ohne Hilfe der Differentialgleichung der auftretenden Kräfte!) |
Alles was ich erhalte ist die Geschwindigkeit in Abhängigkeit vom Auslenkungswinkel und der Länge des Pendels:
[mm] \mathrm{v}(\phi)=\wurzel{2*\mathrm{g}*l*(\cos \phi - \cos \phi_{max})}
[/mm]
Muss ich nun wirklich über [mm] \phi [/mm] integrieren und eine geeignete Variablensubstitution machen, oder gibt es eine andere Möglichkeit?
Kann man das Integral lösen und wenn ja: 1.: wie? 2.: Kommt man auf das gleiche wie beim differentiellen Kraft-Ansatz? (Also Lösung der Differentialgleichung [mm] m*l*\ddot{\phi}=-m*\mbox{g}*\sin \phi [/mm] .) Mein Problem ist halt, dass ich immer eine Abhängigkeit vom maximalen Auslenkungswinkel [mm] \phi_{max} [/mm] habe, der sich vielleicht herauskürzt (oder rausintegriert?), wenn die komplette Schwingungsperiode betrachtet wird.
Ich stehe jetzt halt etwas auf dem Schlauch und hoffe, dass ihr mir helfen könnt.
Mit freundlichen Grüßen,
pi-roland.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:20 Fr 23.10.2009 | Autor: | pi-roland |
Um auf die von mir schon geschriebene Formel für die Geschwindigkeit in Abhängigkeit vom Auslenkungswinkel zu kommen werde ich das hier kurz skizieren. [mm] \(l\) [/mm] ist die Länge des Pendels, g Gravitationskonstante [mm] \phi [/mm] der Auslenkungswinkel.
[mm] E_{ges}=E_{kin}+E_{pot}
[/mm]
An einem Umkehrpunkt ist nur noch potentielle Energie vorhanden, die wie folgt berechnet werden kann:
[mm] E_{ges}=E_{pot_{\mathrm{max}}}=m*\mathrm{g}*(l-l*\cos \phi_{\mathrm{max}})
[/mm]
[mm] E_{kin}(\phi)=E_{ges}-E_{pot_{\mathrm{max}}}=m*\mathrm{g}*(l-l*\cos \phi_{\mathrm{max}}) [/mm] - [mm] m*\mathrm{g}*(l-l*\cos \phi) [/mm] = [mm] m*\mathrm{g}*l*(\cos \phi [/mm] - [mm] \cos \phi_{\mathrm{max}})=\frac{m}{2}v^2
[/mm]
Nach [mm] \(v\) [/mm] umgestellt ergibt sich:
[mm] v(\phi)=\wurzel{2*\mathrm{g}*l*(\cos \phi - \cos \phi_{\mathrm{max}})}
[/mm]
Für die Berechnung der Periodendauer ist es nun nötig die Geschwindigkeit zu jedem Winkel zu wissen und zu addieren.
Das müsste also ein Integral werden. Es ist halt nur die Frage, ob ich gleich über alle Winkel integrieren kann, oder ob ich über den zurückgelegten Weg gehen muss und somit eine geeignete Variablensubstitution durchführe.
Dankbar für jede Hilfe,
pi-roland.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:54 Fr 23.10.2009 | Autor: | leduart |
Hallo pi-roland
!. Dein Ansatz ist richtig. aber du brauchst [mm] \phi_0 [/mm] nicht.
geh einfach von
[mm] m/2*v^2+mgh=const [/mm] aus. jetzt [mm] v=l*\phi'
[/mm]
[mm] m/2l^2\phi'^2+mgl(1-cos\phi))=const=E_0
[/mm]
da man auch beim Kraftgesetz die Kleinwinkelnaeherung benutzt, also [mm] sin\phi=\phi
[/mm]
solltest du das hier auch: [mm] cos\phi=1-\phi^2/2
[/mm]
Dann hast du ne Gleichung der Form
[mm] Af(t)'^2+Bf(t)^2=const
[/mm]
2 Moeglichkeiten: da mann weiss, dass [mm] A*sin^2(\omega*t+\psi)+ cos^2(\omega*+\psi)=1
[/mm]
macht man den Ansatz [mm] f=Asin(\omega*t*\psi) [/mm] und bestimmt [mm] \omega [/mm] daraus
oder man differenziert die Gleichung:
2A*ff''+2B*ff'=0
und hat die bekannte Dgl. fuer harmonische schwingung, wenn man f' ausklammert.
(ohne Vernachlaessigung kommt man auf dem 2ten weg auch zur Dgl. des Fadenpendels fuer groessere [mm] \phi. [/mm] aber dann kannst du ja auch T nicht bestimmen)
Gruss leduart
|
|
|
|