www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle DifferentialgleichungenFadenpendel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Partielle Differentialgleichungen" - Fadenpendel
Fadenpendel < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fadenpendel: totales Differential
Status: (Frage) beantwortet Status 
Datum: 21:40 Di 19.06.2012
Autor: Robse

Aufgabe
Für die Schwingungsdauer T eines Fadenpendels der Länge L gilt bei kleiner Anfangsauslenkung:

T(L,g) = [mm] 2\pi \wurzel{\bruch{L}{g}} [/mm]

Mit welcher Genauigkeit läßt sich die Erdbeschleunigung g nach dieser Formel berechnen, wenn L
mit einer Genauigkeit von ±1% und T mit einer Genauigkeit von ±2% gemessen werden kann?

Guten Abend,

ich sitze jetzt schon eine ganze Weile an der Aufgabe, ohne wirklichen Ansatz.
Mein erster Schritt war die Gleichung nach g umzustellen:

[mm] g=2\pi \bruch{L}{T^2}. [/mm]

Jetzt scheitere ich daran, wie ich diese ±1% bzw ±2% sinnvoll in die Gleichung einbaue. Mein erster (und leider auch einziger) Gedanke war: L=L±0,01L=L(1-0,01). Das gleiche dann mit T, aber da kommt nicht wirklich sinnvolles raus.

Ich hoffe ihr könnt mir helfen.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Fadenpendel: Antwort
Status: (Antwort) fertig Status 
Datum: 22:32 Di 19.06.2012
Autor: ullim

Hi,

die Umstellung nach g stimmt nicht, es gilt

[mm] g(L,T)=\bruch{4\pi^2}{T^2}*L [/mm]

Danach kannst Du [mm] g(L+\Delta{L},T+\Delta{T}) [/mm] in eine Taylorreihe um (L,T) entwickeln und [mm] \Delta{g(L,T)}=g(L+\Delta{L},T+\Delta{T})-g(L,T) [/mm] berechnen.

Danach kann man [mm] \bruch{4\pi^2}{T^2} [/mm] durch [mm] \bruch{g}{L} [/mm] ersetzen. Dann kommst Du auf eine Formel die g, [mm] \bruch{\Delta{T}}{T} [/mm] und [mm] \bruch{\Delta{L}}{L} [/mm] enthält.

Damit kann man den Fehler für g berechnen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]