www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesFaktorisieren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Sonstiges" - Faktorisieren
Faktorisieren < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Faktorisieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:35 Mi 09.11.2011
Autor: Lisa92

Aufgabe
Faktorisiere:
[mm] x^{3} [/mm] - [mm] 6x^{2}+11x [/mm] - 6

Hallo,
Ich versuche die oben genannte Aufgabe zu lösen. Von einem Freund weiß ich, dass es (x-3) (x-2) (x-1) ist. Kann mir jemand die Schritte erklären, wie man darauf kommen kann?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Faktorisieren: Antwort
Status: (Antwort) fertig Status 
Datum: 21:40 Mi 09.11.2011
Autor: felixf

Hallo Lisa!

> Faktorisiere:
>  [mm]x^{3}[/mm] - [mm]6x^{2}+11x[/mm] - 6
>
>  Ich versuche die oben genannte Aufgabe zu lösen. Von
> einem Freund weiß ich, dass es (x-3) (x-2) (x-1) ist. Kann
> mir jemand die Schritte erklären, wie man darauf kommen
> kann?

Nun, erstmal suchst du Nullstellen. Wenn du eine gefunden hast, sagen wir [mm] $\alpha$, [/mm] dann machst du Polynomdivision mit $x - [mm] \alpha$, [/mm] und es sollte kein Rest bleiben (wenn du dich nicht verrechnet hast). Dann machst du mit dem Quotienten weiter. Und zwar solange, bis er ein Polynom von Grad 1 (oder 0) ist.

Bei diesem Polynom beachte: ist $f$ ein normiertes Polynom (d.h. der Koeffizient vor der hoechsten Potenz von $x$ ist 1, so wie hier: die hoechste Potenz von $x$ ist [mm] $x^3$) [/mm] mit ganzzahligen Koeffizienten. Ist $x [mm] \in \IQ$ [/mm] mit $f(x) = 0$, so gilt bereits $x [mm] \in \IZ$, [/mm] und $x$ ist ein Teiler vom konstanten Koeffizienten (dieser ist hier $-6$).

Ist der konstante Koeffizient gleich 0, so kannst du erstmal durch $X$ teilen. Das kannst du solange wiederholen, bis der konstante Koeffizient nicht mehr 0 ist, und dann wuerdest du mit dem Trick weiterkommen.

Hier kannst du aber direkt mit dem Trick loslegen. Ueberlege dir, welche ganzen Zahlen Teiler von $-6$ sind, und probiere diese durch.

LG Felix


Bezug
                
Bezug
Faktorisieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:59 Mi 09.11.2011
Autor: Lisa92

Hallo,
Vielen Dank für die schnelle Antwort. Ich habe das ganze jetzt gerade ausprobiert und das Ergebnis kommt genau hin. Das mit dem Teiler vom konstanten Koeffizienten kannte ich bisher noch nicht.
Aber damit sind diese Aufgabentypen damit auch kein Problem mehr.

Liebe Grüße

Lisa

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]