www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 5-7Faktorisieren von Bruchtermen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mathe Klassen 5-7" - Faktorisieren von Bruchtermen
Faktorisieren von Bruchtermen < Klassen 5-7 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 5-7"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Faktorisieren von Bruchtermen: Wer kann hier helfen
Status: (Frage) beantwortet Status 
Datum: 12:28 So 20.03.2005
Autor: Seppino

Hallo an Alle,

bei der nachfolgenden Aufgabe habe ich Probleme sie zu lösen.

Aufgabenstellung: Faktorisiere zunächst. Rechne dann

[mm] \bruch {3a²-27} {6a+12} : \bruch {a²-6a+9} {a²+4a+4} [/mm]

Kann mir jemand den Lösungsweg erklären. Ich habe hier gerade den vollen black-out.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

mfg

Seppino



        
Bezug
Faktorisieren von Bruchtermen: Ausklammern+binomische Formeln
Status: (Antwort) fertig Status 
Datum: 12:47 So 20.03.2005
Autor: Loddar

Hallo Seppino,

zunächst [willkommenmr] !!


> Aufgabenstellung: Faktorisiere zunächst. Rechne dann
> [mm]\bruch {3a²-27} {6a+12} : \bruch {a²-6a+9} {a²+4a+4}[/mm]

Gar keine eigenen Ideen?

Zuerst schreiben wir den Bruch mit der Division um, indem wir mit dem Kehrwert multiplizieren:

[mm] $\bruch {3a^2-27} [/mm] {6a+12} : [mm] \bruch {a^2-6a+9} {a^2+4a+4} [/mm] \ = \ [mm] \bruch {3a^2-27} [/mm] {6a+12} * [mm] \bruch {a^2+4a+4} {a^2-6a+9}$ [/mm]


Faktorisieren heißt: Ausklammern soweit wie möglich und evtl. Anwendung der binomischen Formeln:
$(a + [mm] b)^2 [/mm] \ = \ [mm] a^2 [/mm] + 2ab + [mm] b^2$ [/mm]
$(a - [mm] b)^2 [/mm] \ = \ [mm] a^2 [/mm] - 2ab + [mm] b^2$ [/mm]
$(a + b)*(a - b) \ = \ [mm] a^2 [/mm] - [mm] b^2$ [/mm]

Nehmen wir für das Ausklammern mal [mm] $3a^2-27$ [/mm]

[mm] $3a^2 [/mm] - 27 \ = \ [mm] 3*a^2 [/mm] - 3*9 \ = \ [mm] 3*\left(a^2 - 9\right)$ [/mm]

Nun können wir auf die Klammer noch die 3. binomische Formel anwenden (s.o.):
[mm] $\left(a^2 - 9\right) [/mm] \ = \ [mm] \left(a^2 - 3^2\right) [/mm] \ = \ (a + 3)*(a - 3)$

Damit wird doch für den Zähler des ersten Bruches insgesamt:
[mm] $3a^2 [/mm] - 27 \ = \ 3 * (a + 3)*(a - 3)$


Ähnlich funktioniert das auch mit den anderen Ausdrücken.

Tipp: Der 2. Bruch sollte mal auf die 1. bzw. 2. binomische Formel untersucht werden!


Wenn man dann weitestgehend faktorisiert hat, kann man durch Kürzen den Gesamtausdruck stark vereinfachen.


Kommst Du nun alleine weiter?
Poste doch mal Deine Ergebnisse ...

Gruß
Loddar


Bezug
        
Bezug
Faktorisieren von Bruchtermen: Verstanden?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:51 Mo 21.03.2005
Autor: cagivamito

Hast du es denn jetzt verstanden? Ich fand Loddars Erklärung ziemlich genial. Besser gehts nicht mehr, wenn aber noch was unklar ist, frag... und wenn alles klar ist, was sagt man dann?

DANKE

:-)

Bezug
        
Bezug
Faktorisieren von Bruchtermen: habe immernoch problem
Status: (Frage) beantwortet Status 
Datum: 04:18 Mo 12.12.2011
Autor: rafa_cue

Aufgabe
[mm] \bruch{\bruch{x}{2}-\bruch{1}{x}}{ \bruch{1}{1}-\bruch{1}{x}} [/mm]

die beiträge waren massiv hilfreich aber ich hab ne aufgabe wie die und habe immernoch 0ahnung was ich da machen soll bitte um schnelle antwort


Bezug
                
Bezug
Faktorisieren von Bruchtermen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:36 Mo 12.12.2011
Autor: fred97


> [mm]\bruch{\bruch{x}{2}-\bruch{1}{x}}{ \bruch{1}{1}-\bruch{1}{x}}[/mm]
>  
> die beiträge waren massiv hilfreich aber ich hab ne
> aufgabe wie die und habe immernoch 0ahnung was ich da
> machen soll bitte um schnelle antwort
>  

[mm]\bruch{\bruch{x}{2}-\bruch{1}{x}}{ \bruch{1}{1}-\bruch{1}{x}}= \bruch{x^2-2}{2x}*\bruch{x}{x-1}[/mm]

Hilft das ?

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 5-7"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]