Faltung/Dichte-Bestimmung < Stochastik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Es seien X und Y unabhängige Zufallsvariablen. X sei gleichverteilt auf (0,1) und Y sei gleichverteilt auf (0,2). Bestimme die Dichte von X+Y. |
Salut!
Nachfolgend meine Lösung zur Aufgabe, von welcher ich wissen will, ob sie soweit stimmt, da mir das ganze irgendwie komisch vorkommt - und sollte es sich nicht nur um meine Paranoia handeln, wäre ich über einen Tipp, wo der Fehler liegt, auch noch ganz dankbar...
Also:
Zu den Dichtefunktionen:
[mm] f_{X} [/mm] = 1 * ind(0;1)
[mm] f_{Y} [/mm] = [mm] \bruch{1}{2} [/mm] * ind(0;2)
wobei ind(a;b) die Indikatorfunktion über das Intervall (a;b) darstellen soll, also ind(a;b) = 1 [mm] \forall [/mm] n [mm] \in [/mm] (a;b), ind(a;b) = 0 [mm] \forall [/mm] n [mm] \not\in [/mm] (a;b)
Damit sollte sich doch für die Dichte von X+Y ergeben:
[mm] f_{X+Y}(z) [/mm] = [mm] \integral_{-\infty}^{\infty}{f_{X}(v)f_{Y}(z-v)dv} [/mm] = [mm] \integral_{-\infty}^{\infty}{1 * ind(0;1) * \bruch{1}{2} * ind(0;2) dv} [/mm] = [mm] \integral_{0}^{1}{\bruch{1}{2}dv} [/mm] = [mm] \bruch{1}{2} [/mm] * ind(0;1)
Entspricht das wirklich der Realität, oder täusche ich mich?
Herzlichen Dank für eure Hilfe auf jeden Fall bereits jetzt,
à bientôt,
Tarek.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:05 So 04.06.2006 | Autor: | Walde |
Hi jeu_blanc,
> [mm]f_{X+Y}(z)[/mm] =
> [mm]\integral_{-\infty}^{\infty}{f_{X}(v)f_{Y}(z-v)dv}[/mm] =
> [mm]\integral_{-\infty}^{\infty}{1 * ind(0;1) * \bruch{1}{2} * ind(0;2) dv}[/mm][mm] =\integral_{0}^{1}{\bruch{1}{2}dv} [/mm]
Ich glaube im letzten Schritt steckt ein Fehler. Da verarbeitest du die Indikatorfunktionen zu schnell.Ich schreibe es nochmal etwas ausführlicher.
[mm] f_{X+Y}(z)=\integral_{-\infty}^{\infty}{1*1_{[0;1]}(v)*\bruch{1}{2}*1_{[0;2]}(z-v) dv}=\bruch{1}{2}\integral_{0}^{1}{1_{[0;2]}(z-v) dv}
[/mm]
Du musst beachten, dass bei der 2. Indik.fkt. nicht v , sondern z-v im Argument steht. Ich hab mir noch nicht überlegt, was dann rauskommt, aber vielleicht kommst du ja selbst drauf.
L G walde
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:21 So 04.06.2006 | Autor: | jeu_blanc |
Das ist ein Argument, ja...
Wobei das auf der anderen Seite auch heißt, dass der Rest bis dahin so weit nicht von der Realität entfernt sein kann - und die Indikatorfunktion sollte sich noch irgendwie entsprechend hinbiegen lassen, das lasse ich mir noch einmal durch den Kopf gehen.
Auf jeden Fall herzlichen Dank!
Tarek
|
|
|
|