www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenHochschulPhysikFehlerfortpflanzung Winkelf.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "HochschulPhysik" - Fehlerfortpflanzung Winkelf.
Fehlerfortpflanzung Winkelf. < HochschulPhysik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fehlerfortpflanzung Winkelf.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:37 So 02.01.2011
Autor: flare

Schönen guten Tag.
Wäre jemand so lieb, und könnte meine Rechnung kurz auf Fehler untersuchen?
Es wurde mittels Prismenspektrometer der Brechungsindex bestimmt.
Zur Winkelmessung gab es eine große kreisförmige Skala in 1/2 Grad und einen Nonius mit je 30 Gradminuten, wobei ein Skalenteil dort 1 Minute betrug.
Da keinerlei Informationen zur Messunsicherheit vorlagen, wurde auf eine Minute abgeschätzt, ist dies zweckmäßig?

Also ug=1/60°

Nun möchte ich die Unsicherheit der Funktion [mm] \delta_{min}=\bruch{\gamma_{1}-\gamma_{2}}{2} [/mm] bestimmen.
In Grad ergibt dies dann für die Unsicherheit [mm] {\delta_{min}}=\wurzel{(\bruch{1}{2}*ug)^2+(\bruch{1}{2}*ug)^2}=0,0118° [/mm]
Der Brechungsindex berechnet sich nun mit der Formel [mm] \bruch{Sin(0.5(\delta_{min}+\phi)}{Sin(0.5*\phi)}. [/mm]
[mm] \phi [/mm] war in unserem Fall 60°. Der Nenner wird somit zu [mm] \bruch{1}{2}. [/mm]
Die Ableitung des Zählerterms ist dann [mm] Cos(0.5(\delta_{min}+\phi). [/mm]
Nun wurde mir gesagt, dass man bei Winkelfunktionen die Unsicherheit in Bogenmaß berechnet also:
[mm] \wurzel{Cos(\bruch{Pi}{2*180°}(\delta_{min}+60°))^2*(u_{\delta_{min}}*Pi/180)^2} [/mm]
Ich erhalte dann letztlich 0.000116245 bei [mm] \delta_{min}=51,175° [/mm]
Im Skript ist ein weitaus größerer Wert angegeben. Habe ich die Unsicherheit der Winkelmessung mit einer Winkelminute zu gering angenommen? Oder liegt es daran, dass die 60° fehlerlos angenommen wurden?
Bitte um Klärung :)
Vielen Dank

        
Bezug
Fehlerfortpflanzung Winkelf.: Antwort
Status: (Antwort) fertig Status 
Datum: 18:53 So 02.01.2011
Autor: Event_Horizon

Hallo!

Deine ersten Formeln sind ziemlich widersprüchlich, daher gehe ich darauf nicht näher ein.

Das Problem ist, daß bei der Fehlerrechnung ja abgeleitet wird. Du hast gelernt, daß sin'=cos gilt. Wenn du dir eine sin-Funktion im Gradmaß zeichnest, siehst du, daß ihre Steigung bei x=0 mitnichten cos(0)=1 ist! Das gilt nur im Bogenmaß!
Deshalb gilt: Das Gradmaß ist gut, wenn du einfache Geometrie betreibst, oder z.B. um ein Endergebnis anzugeben, weil das Gradmaß dem Menschen besser liegt, als das Bogenmaß.
Sobald du aber anfängst, z.B. abzuleiten oder zu integrieren, mußt du das Bogenmaß nehmen.

Dein Fehler ist nun, daß du genau das zwar beachtet hast, die Unsicherheit aber nun auch im Bogenmaß vorliegt, während dein Messwert in Grad vorliegt. Du solltest die Unsicherheit also auch wieder ins Gradmaß konvertieren.


Bezug
                
Bezug
Fehlerfortpflanzung Winkelf.: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:01 So 02.01.2011
Autor: flare

Warum sollten meine Formeln widersprüchlich sein?
Ok ich hab einmal den Doppelindex vergessen, es muss
[mm] {u_{\delta_{min}}}=\wurzel{(\bruch{1}{2}*ug)^2+(\bruch{1}{2}*ug)^2}=0,0118° [/mm]
Die [mm] \gamma [/mm] sind meine beiden Winkelmessungen, die jeweils ug als Unsicherheit haben.
Der Brechungsindex hat dann die Formel
[mm] n=\bruch{Sin(0.5(\delta_{min}+\phi)}{Sin(0.5*\phi)} [/mm]
ist also einheitenlos, ebenso wie seine Unsicherheit:
[mm] u_{n}=\wurzel{Cos(\bruch{Pi}{2*180°}(\delta_{min}+60°))^2*(u_{\delta_{min}}*Pi/180)^2} [/mm]
Warum muss ich dann hier noch einmal was umrechnen, ich erhalte ja für den Brechungsindex unabhängig ob ich in Bogenmaß oder Grad rechne denselben Wert
Wichtig wäre für mich auch die Frage ob die Abschätzung der Unsicherheit von einem Skalenteil zu einer Gradminute vernünftig ist?

Bezug
                        
Bezug
Fehlerfortpflanzung Winkelf.: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Di 04.01.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]