www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieFermatsche Zahl Pseudoprimzahl
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Zahlentheorie" - Fermatsche Zahl Pseudoprimzahl
Fermatsche Zahl Pseudoprimzahl < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fermatsche Zahl Pseudoprimzahl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:14 Mo 13.06.2011
Autor: Loriot95

Aufgabe
Beweisen Sie: Jede Fermatsche Zahl [mm] F_{n} [/mm] = [mm] 2^{2^{n}}+1, [/mm] n [mm] \in \IN, [/mm] ist eine Pseudoprimzahl.

Guten Morgen,

ich komme bei dieser Aufgabe irgendwie nicht weiter. Also zu zeigen ist, dass
[mm] F_{n} [/mm] | [mm] 2^{F_{n}}-2 [/mm] d.h es gibt ein z [mm] \in \IZ, [/mm] so dass gilt: [mm] 2^{F_{n}}-2 [/mm] = [mm] F_{n}*z. [/mm] Also: [mm] 2^{2^{2^{n}}+1}-2 [/mm] = [mm] (2^{2^{n}}+1)* [/mm] z [mm] \Rightarrow [/mm] z = [mm] \bruch{2^{2^{2^{n}}+1}-2}{2^{2^{n}}+1}. [/mm] Hm wie kann ich nun zeigen, dass es sich hierbei um eine ganze Zahl handelt? Das Umformen bereitet mir hier sehr viele Probleme. Würde mich freuen, wenn mir hier jemand weiter helfen könnte.

LG Loriot95

        
Bezug
Fermatsche Zahl Pseudoprimzahl: Antwort
Status: (Antwort) fertig Status 
Datum: 11:25 Mo 13.06.2011
Autor: M.Rex

Hallo

[mm] \bruch{2^{2^{2^{n}}+1}-2}{2^{2^{n}}+1}. [/mm]
[mm] \bruch{2^{2^{2^{n}}}\cdot2^{1}-2}{2^{2^{n}}+1}. [/mm]
[mm] =\bruch{2\left(2^{2^{2^{n}}}-1\right)}{2^{2^{n}}+1}. [/mm]
[mm] =\bruch{2\left(2^{2\cdot2\cdot n}-1\right)}{2^{2\cdot n}+1}. [/mm]
[mm] =\bruch{2\left(\left(2^{2n}\right)^{2}-1\right)}{2^{2n}+1}. [/mm]
[mm] =\bruch{2\left(2^{2n}-1\right)\left(2^{2n}+1\right)}{2^{2n}+1}. [/mm]
[mm] =2\left(2^{2n}-1\right). [/mm]

Und der Bruch ist nun wie von Zauberhand verschwunden. ;-)

Marius


Bezug
                
Bezug
Fermatsche Zahl Pseudoprimzahl: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:31 Mo 13.06.2011
Autor: Loriot95

Da muss jemand noch mal ein paar elementare Regeln wiederholen....
Ich danke dir :)

LG Loriot95

Bezug
                        
Bezug
Fermatsche Zahl Pseudoprimzahl: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:34 Mo 13.06.2011
Autor: M.Rex


> Da muss jemand noch mal ein paar elementare Regeln
> wiederholen....
>  Ich danke dir :)

Kein Problem, manchmal sieht man solche Sachen einfach nicht.
Ich hab hier recht schnell gesehen, dass ich die 2 aus dem Zähler ausklammern kann, und dann hab ich eben auch recht schnell die 3. binomische Formel entdeckt.


>  
> LG Loriot95

Marius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]