www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikFeuerzeug
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Physik" - Feuerzeug
Feuerzeug < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Feuerzeug: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:22 Mi 15.12.2010
Autor: kushkush

Aufgabe
In einem pneumatischen Feuerzeug wird das Volumen von Luft sehr rasch auf ein Zehntel verkleinert. Wie hoch steigt die Lufttemperatur?

Annahme: Adiabatische Kompression eines idealen Gases

[mm] $T_{Anfang}=20°C$, C_{p}/C_{V}=1.4 [/mm]

Hallo!


Es gilt: $ [mm] T_{1}V_{1}^{(C_{p}/C_{V})-1}= T_{2}\cdot 0.1V_{1}^{(C_{p}/C_{V})-1} [/mm] $

Also [mm] $T_{2}=T_{1}\cdot 100=293\cdot [/mm] 100 = 2930 K $


Ist der Rechenweg richtig?


Ich habe diese Frage in keinem anderen Forum gestellt und danke für jeden Hinweis.


Gruss

kushkush

        
Bezug
Feuerzeug: Antwort
Status: (Antwort) fertig Status 
Datum: 22:44 Mi 15.12.2010
Autor: wattwurm83

Also deine Gleichung ist richtig...

[mm] \kappa = \bruch{C_{P}}{C_{V}}[/mm]  das Zeichen ist Kappa, der adiabatenexponent

auch das stimt für die adiabatische Kompresion...

1. Poisson-Gleichung: [mm] T_{1}*V_{1}^{\kappa - 1} = T_{2}*V_{2}^{\kappa - 1} [/mm]

Allerdings glaubst du echt, dass die Temperatur auf über 3000°C steigt? Das wäre ja besser als jeder Ottomotor *lach*

ich denke du hast einen Fehler in der Kürzung der Parameter drinne, also bezüglich der Potenzgesetze.

Denn: [mm] \bruch{V_{1}^{\kappa - 1}}{(0,1*V_{1})^{\kappa - 1}} \not= 10 [/mm]

es gilt: [mm] \bruch{a^{n}}{b^{n}} = \{\bruch{a}{b}\}^{n} [/mm]


gegeben ist:
[mm] V_{2} = 0,1 * V_{1} [/mm] und obige Gleichung für die adiabatische Kompression...

eingesetzt und umgestellt ergibt das:

[mm] T_{2} = T_{1} * \bruch{V_{1}^{\kappa - 1}}{(0,1*V_{1})^{\kappa - 1}} = T_{1} * \{ \bruch{V_{1}}{0,1*V_{1}}\}^{\kappa-1} = T_{1} * 10^{\kappa-1} [/mm]

Und dann kommst du auch auf ein brauchbares Ergebnis von
[mm] T_{2} = 735,98 K \approx[/mm] 463°C

MfG

Bezug
                
Bezug
Feuerzeug: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:51 Mi 15.12.2010
Autor: kushkush

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo wattwurm,


meinst du nicht


$({0.1V_{1})^{\kappa -1}T_{2}=T_{1}V_{1}^{\kappa-1} $ ?



Danke!!!

Gruss

kushkush

Bezug
                        
Bezug
Feuerzeug: Antwort
Status: (Antwort) fertig Status 
Datum: 22:55 Mi 15.12.2010
Autor: wattwurm83

natürlich...
hast ja recht...

habe es auch schon korrigiert...

MfG

Bezug
                                
Bezug
Feuerzeug: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:59 Mi 15.12.2010
Autor: kushkush

Nochmal: Danke!




Gruss

kushkush

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]