www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionFibonacci-Folge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Induktion" - Fibonacci-Folge
Fibonacci-Folge < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fibonacci-Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:43 Mi 06.01.2010
Autor: DrNetwork

Aufgabe
n [mm] \ge [/mm] 0: [mm] \summe_{k=0}^{n} kF_k [/mm] = [mm] nF_{n+2}-F_{n+3}+2 [/mm]
Wobei gilt: [mm] F_{n+2} [/mm] = [mm] F_{n+1} [/mm] + [mm] F_{n} [/mm]

Es funktioniert ab n=2.

[mm] \summe_{k=0}^{n+1} kF_k [/mm] = [mm] (n+1)F_{n+3}-F_{n+4}+2 [/mm]
[mm] \gdw \summe_{k=0}^{n} kF_k [/mm] + [mm] (n+1)F_{n+1} [/mm] = [mm] (n+1)F_{n+3}-F_{n+4}+2 [/mm]
[mm] {\underbrace{\gdw}_{IV} nF_{n+2}-F_{n+3}+2 + (n+1)F_{n+1} = (n+1)F_{n+3}-F_{n+4}+2} [/mm]

So am entscheidenden Punkt hakts, bei mir. Ich hab versucht die Fibonacci Zahlen auseinander zu nehmen um sie danach anders zusammenzusetzen aber scheint in die Hose zu gehen. Hätte jemand einen Tip?

also ich hatte sowas:

[mm] n(F_{n+1}+F_{n})-(F_{n+2}+F_{n+1})+(n+1)F_{n+1}= [/mm]
[mm] nF_{n+1}+nF_{n}-F_{n+2}-F_{n+1}+(n+1)F_{n+1} [/mm]

        
Bezug
Fibonacci-Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 02:44 Mi 06.01.2010
Autor: Teufel

Hi!

Na, wenn du da rauf gekommen bist, ist das doch super!
Die letzte Gleichung stimmt doch.

Zwar würde ich bei der Induktion immer nur mit einer Seite anfangen und sie in die rechte überführen, aber ansonsten passt das schon so.

[anon] Teufel

Bezug
                
Bezug
Fibonacci-Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 03:19 Mi 06.01.2010
Autor: DrNetwork

Das ist nur die linke Seite in "2 Variationen" :)

Bezug
                        
Bezug
Fibonacci-Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 03:27 Mi 06.01.2010
Autor: Teufel

Ah ok.

Dann mach das mal für die rechte Seite auch. Ersetze einfach [mm] F_4=F_3+F_2 [/mm] und [mm] F_3=F_2+F_1. [/mm] Dann sind auf der rechten Seite auch nur Summanden mit [mm] F_2 [/mm] und [mm] F_1. [/mm]

Dann kann das fröhliche Zusammenfassen/Wegkürzen beginnen!

[anon] Teufel

Bezug
                                
Bezug
Fibonacci-Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:29 Mi 06.01.2010
Autor: DrNetwork

Nun ja schöner fänd ich es wie du schon angemerkt hast, die linke in die rechte Seite zu überführen. Ich hab nämlich noch keinen Dozenten gesehen der bewiesen hat 0=0 und wüsste auch nicht ob man dann die volle Punktzahl kriegen würde.

Bezug
                                        
Bezug
Fibonacci-Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 10:59 Mi 06.01.2010
Autor: angela.h.b.

Hallo,

Du hattest

>>>> [mm] ...\underbrace{\gdw}_{IV} nF_{n+2}-F_{n+3}+2 [/mm] + [mm] (n+1)F_{n+1} [/mm] =

[mm] =\red{nF_{n+2}}-F_{n+3}+2 +\red{ nF_{n+1} }+F_{n+1} [/mm]

[mm] =nF_{n+3}-F_{n+3}+2+F_{n+1} [/mm]

[mm] =nF_{n+3}-F_{n+3}-F_{n+2}+F_{n+2}+2+F_{n+1} [/mm]

= ...

Nun mach's fertig.

Gruß v. Angela

Bezug
                                                
Bezug
Fibonacci-Folge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:18 Mi 06.01.2010
Autor: DrNetwork

Ach! Vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]