www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionFibonacci
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Induktion" - Fibonacci
Fibonacci < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fibonacci: Beweis
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:26 Mo 24.11.2008
Autor: L1NK

Aufgabe
Für die Fibonacci Zahlen gilt:
F(n) = [mm] 2^{n} [/mm]
Diese Behauptung ist zu beweisen, allerdings ohne die Benutzung der Formel von Binet...

Hallo, kann mir einer weiterhelfen.
Also mit Binet wäre das kein Thema nur so fehlt mir der Ansatz.
Gruss LINK

        
Bezug
Fibonacci: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:32 Mo 24.11.2008
Autor: angela.h.b.


> Für die Fibonacci Zahlen gilt:
>  F(n) = [mm]2^{n}[/mm]

Hallo,

ist das der komplette Aufgabentext?

Wie sind die Fibonaccizahlen bei Dir definiert?

Gruß v. Angela

Bezug
                
Bezug
Fibonacci: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:50 Mo 24.11.2008
Autor: L1NK

Ja das ist der komplette Aufgabentext.
Das ist ja gerade mein Problem, weiß nicht was ich als Induktionsannahme nehmen soll.
Das einzige was wir in der Vorlesung aufgeschrieben haben ist
F(1) = 1 [mm] \wedge [/mm] F(2) = 1 [mm] \wedge [/mm] F(n+2) = F(n+1) + F(n)
Keine Ahnung was ich da machen soll....

Bezug
                        
Bezug
Fibonacci: Antwort
Status: (Antwort) fertig Status 
Datum: 14:55 Mo 24.11.2008
Autor: fred97


> Ja das ist der komplette Aufgabentext.
>  Das ist ja gerade mein Problem, weiß nicht was ich als
> Induktionsannahme nehmen soll.
>  Das einzige was wir in der Vorlesung aufgeschrieben haben
> ist
> F(1) = 1 [mm]\wedge[/mm] F(2) = 1 [mm]\wedge[/mm] F(n+2) = F(n+1) + F(n)
>  Keine Ahnung was ich da machen soll....



Da stimmt gewaltig etwas nicht !! Oben schreibst Du, Ihr sollt F(n) = [mm] 2^n [/mm] zeigen. Dann wäre ja F(1) = 2 und F(2) = 4 ????????????????


FRED

Bezug
                                
Bezug
Fibonacci: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:56 Mo 24.11.2008
Autor: reverend

Die Aufgabe würde noch einigermaßen Sinn machen, wenn zu zeigen wäre: [mm] F(n)\le 2^n [/mm]
War's das vielleicht?

Bezug
                                        
Bezug
Fibonacci: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:16 Mo 24.11.2008
Autor: L1NK

Stimmt hab mich verlesen.
Also beweise F(n) < [mm] 2^{n} [/mm]
Weiß aber trotzdem keinen Anfang.
Sorry wegen dem Missverständnis.

Bezug
                                                
Bezug
Fibonacci: vollständige Induktion
Status: (Antwort) fertig Status 
Datum: 15:22 Mo 24.11.2008
Autor: Roadrunner

Hallo L1nk!


Wie die Forumsüberschrift schon verrät ... verwende hier MBvollständige Induktion mit der rekursiven Folgenvorschrift.

Formuliere dafür um zu:
$$F(n) \ = \ F(n-1)+F(n-2)$$
Der Induktionsanfang ist hier auch für zwei Werte $F(1)_$ sowie $F(2)_$ zu führen.

Der Induktionsschritt lautet dann im ersten Schritt:
$$F(n+1) \ = \ F(n)+F(n-1) \ < \ [mm] 2^n+2^{n-1} [/mm] \ < \ ...$$

Gruß vom
Roadrunner


Bezug
                                                        
Bezug
Fibonacci: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:17 Mo 24.11.2008
Autor: L1NK

Danke erstmal für die Antwort. Nur leider komme ich nicht ganz weiter.
Wie bekomme ich denn [mm] 2^{n} [/mm] + [mm] 2^{n-1} [/mm] weiter vereinfacht??
Danke

Bezug
                                                                
Bezug
Fibonacci: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:33 Mo 24.11.2008
Autor: fred97


> Danke erstmal für die Antwort. Nur leider komme ich nicht
> ganz weiter.
>  Wie bekomme ich denn [mm]2^{n}[/mm] + [mm]2^{n-1}[/mm] weiter vereinfacht??
>  Danke

[mm]2^{n}[/mm] + [mm]2^{n-1}[/mm]  = [mm] 2^{n-1}(2+1) [/mm] < [mm] 2^{n-1}(2+2)= 2^{n-1}(4) [/mm] = [mm] 2^{n+1} [/mm]

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]