www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenNaive MengenlehreFibonacci Folge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Naive Mengenlehre" - Fibonacci Folge
Fibonacci Folge < naiv < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Naive Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fibonacci Folge: Tipp
Status: (Frage) beantwortet Status 
Datum: 22:23 Mi 17.10.2007
Autor: Walhalla-Manny

Aufgabe
http://theoretische.informatik.uni-wuerzburg.de/fileadmin/10030400/Lehre/TI/aufg.theoinf.07.pdf
Aufgabe 1.22

Hallo, wie ihr in der Aufgabe sehen könnt, ist es sicher für einige einfach, doch kann ich mit dem Begriff Induktion in diesem Fall nichts anfangen, somit meine Frage an euch ob mir jemand bei dieser Aufgabe einen kleinen tip geben kann, wie man am besten anfängt. Ich hoffe ihr könnt mir verzeihen das ich einfach das Pdf genommen habe.

mfg Björn Boyens
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Fibonacci Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 22:49 Mi 17.10.2007
Autor: schachuzipus

Hallo Björn,

gehe die Induktion einfach mal "wie immer" an..

[mm] \underline{Induktionsanfang}: [/mm] $n=1$

Es ist [mm] $f_1=1$ [/mm] nach Definition

Ebenso [mm] $\frac{(1+\sqrt{5})^{1+1}-(1-\sqrt{5})^{1+1}}{\sqrt{5}\cdot{}2^{1+1}}=...=1$ [/mm]

selber ausrechnen... ;-)

[mm] \underline{Induktionsschritt}: $n\to [/mm] n+1$

[mm] \underline{Induktionsvoraussetzung}: [/mm] Sei [mm] $n\in\IN$ [/mm] beliebig und gelte für alle [mm] $k\le [/mm] n$ (erweiterte Induktionsvoraussetzung)

[mm] $f_k=\frac{(1+\sqrt{5})^{k+1}-(1-\sqrt{5})^{k+1}}{\sqrt{5}\cdot{}2^{k+1}}$ [/mm]

Im eigentlichen Induktionsbeweis müssen wir nun zeigen, dass unter der Induktionsvoraussetzung gefälligst auch

[mm] $f_{n+1}=\frac{(1+\sqrt{5})^{(n+1)+1}-(1-\sqrt{5})^{(n+1)+1}}{\sqrt{5}\cdot{}2^{(n+1)+1}}$ [/mm] ist

Versuchen wir's mal:

[mm] $f_{n+1}=f_n+f_{n-1}$ [/mm] nach Definition der Fibonaccifolge

[mm] $=\frac{(1+\sqrt{5})^{n+1}-(1-\sqrt{5})^{n+1}}{\sqrt{5}\cdot{}2^{n+1}}+\frac{(1+\sqrt{5})^{(n-1)+1}-(1-\sqrt{5})^{(n-1)+1}}{\sqrt{5}\cdot{}2^{(n-1)+1}}$ [/mm]  nach Induktionsvoraussetzung

Das musst du nun weiter vereinfachen und in die Form [mm] $.....=\frac{(1+\sqrt{5})^{(n+1)+1}-(1-\sqrt{5})^{(n+1)+1}}{\sqrt{5}\cdot{}2^{(n+1)+1}}$ [/mm] bringen

Dann hast du's. Ist nur ein wenig Rechnerei....


Reichen dir die Hinweise? ;-)


LG

schachuzipus

Bezug
                
Bezug
Fibonacci Folge: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:25 Do 18.10.2007
Autor: Walhalla-Manny

Super, hast mir damit sehr weitergeholfen, wir haben glaube ich einen Fehler irgendwie beim durchrechnen gemacht... und kommen sicher im Laufe der Nacht noch auf deine Lösung ;)

mfg Manny

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Naive Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]