www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionFibonacci zahlen < (7/4)^n
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Induktion" - Fibonacci zahlen < (7/4)^n
Fibonacci zahlen < (7/4)^n < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fibonacci zahlen < (7/4)^n: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 17:13 Sa 18.10.2008
Autor: Ziykuna

Aufgabe
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

x1 = 1
x2 = 2
und xn+2 = xn + xn+1
daraus folgt, xn < [mm] (7/4)^n [/mm]

Ja mal wieder Dibonacci Zahlen :>. Irgendwie komm ich nicht wirklich auf nen Grünen Zweig....  :/ und mir fehlt auch einfach Erfahrung mit Ungleichungen muss ich sagen....

Zu zeigen is, das mit Induktion....

        
Bezug
Fibonacci zahlen < (7/4)^n: Antwort
Status: (Antwort) fertig Status 
Datum: 17:32 Sa 18.10.2008
Autor: Marcel

Hallo,

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt
>  
> x1 = 1
>  x2 = 2
>  und xn+2 = xn + xn+1
> daraus folgt, xn < [mm](7/4)^n[/mm]
>  Ja mal wieder Dibonacci Zahlen :>. Irgendwie komm ich
> nicht wirklich auf nen Grünen Zweig....  :/ und mir fehlt
> auch einfach Erfahrung mit Ungleichungen muss ich
> sagen....
>  
> Zu zeigen is, das mit Induktion....

da steht doch alles. Zeige, dass die Behauptung für $n=1$ stimmt, und zudem, dass sie für $n=2$ stimmt.

Jetzt sei $n [mm] \in \IN$ [/mm] mit $n > 2$ beliebig und die Behauptung gelte für alle $n [mm] \in \IN_{< n} [/mm] $. Dann gilt sowohl [mm] $x_{n} [/mm] < [mm] (7/4)^n$, [/mm] als auch [mm] $x_{n-1} [/mm] < [mm] (7/4)^{n-1}$. [/mm]

Im Induktionsschritt hast Du nun zu zeigen, dass [mm] $x_{n+1} [/mm] < [mm] (7/4)^{n+1}$ [/mm] ist.

Dazu:
Es gilt:
[mm] $x_{n+1}=x_n+x_{n-1}$, [/mm] und daher ist
[mm] $$x_{n+1} [/mm] < [mm] (7/4)^n+(7/4)^{n-1}$$ [/mm]
wegen der Induktionsvoraussetzung. Jetzt ist es an Dir, noch zu zeigen, dass [mm] $(7/4)^n+(7/4)^{n-1} \le (7/4)^{n+1}$ [/mm] ist, denn daraus folgt dann ja schon [mm] $x_{n+1} [/mm] < [mm] (7/4)^{n}+(7/4)^{n-1} \le (7/4)^{n+1}$ [/mm] (Transitivität).

Damit ich Dir die Aufgabe hier nicht nur "runterbete", überlasse ich es nun also Dir, zu begründen, dass [mm] $(7/4)^n+(7/4)^{n-1} \le (7/4)^{n+1}$. [/mm] Ein kurzer Blick sollte Dir zeigen, dass diese Ungleichung deshalb richtig ist, weil sie zu einer anderen äquivalent ist, die wiederum offensichtlich richtig ist. Genaueres liefere ich Dir allerdings nur noch auf Nachfrage, da Du hier ja den Induktionsbeweis lernen sollst ;-)

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]