Finde P s.d. D diagonal < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:58 Mo 23.08.2010 | Autor: | natascha |
Aufgabe | Sei [mm] A=\pmat{ -1 & -2 & 0 & 0 \\ 3 & 4 & 0 & 0 \\ 0 & 0 & -1 & -2 \\ 0 & 0 & 3 & 4 }
[/mm]
(a) Berechne die Eigenwerte von A
(b) Bestimme die zugehörigen Eigenräume
(c) Finde eine invertierbare Matrix P aus GL4(C) so dass [mm] PAP^{-1} [/mm] eine Diagonalmatrix ist.
(d) Berechne [mm] A^{n} [/mm] für alle natürlichen Zahlen n |
Hallo
Ich habe ein Problem bei dieser Aufgabe. Die ersten beiden Teilaufgaben konnte ich bereits lösen:
a) Ich habe die Matrix transformiert (Gauss), so dass sie eine obere Dreiecksmatrix wird und somit konnte ich die EW an der Diagonale ablesen. Ich erhalte so als Eigenwerte -2 und -1, je zweimal.
b) Damit konnte ich dann die Eigenvektoren und somit auch die Eigenräume berechnen, ich erhalte als v1=(1 1 0 0) für den Eigenwert -1 und v2=(1 -2/3 1 -2/3) für den Eigenwert -2.
Stimmt das so bisher? Weil jetzt ergibt sich das Problem, dass ich eine solche P Matrix finden soll. Hätte ich nun 4 Eigenvektoren könnte ich ja diese als Basis nehmen, aber so weiss ich nicht, wie ich vorgehen muss. Ich habe probiert, [mm] PAP^{-1}=D [/mm] umzuformen, da ich D ja habe (Diagonalmatrix mit EW auf der Diagonalen...), aber leider hat das nicht so hingehauen. Ich wäre froh, wenn ihr mir dabei helfen könntet! Vielen Dank!
|
|
|
|
Hallo natascha,
> Sei [mm]A=\pmat{ -1 & -2 & 0 & 0 \\ 3 & 4 & 0 & 0 \\ 0 & 0 & -1 & -2 \\ 0 & 0 & 3 & 4 }[/mm]
>
> (a) Berechne die Eigenwerte von A
> (b) Bestimme die zugehörigen Eigenräume
> (c) Finde eine invertierbare Matrix P aus GL4(C) so dass
> [mm]PAP^{-1}[/mm] eine Diagonalmatrix ist.
> (d) Berechne [mm]A^{n}[/mm] für alle natürlichen Zahlen n
> Hallo
>
> Ich habe ein Problem bei dieser Aufgabe. Die ersten beiden
> Teilaufgaben konnte ich bereits lösen:
> a) Ich habe die Matrix transformiert (Gauss), so dass sie
> eine obere Dreiecksmatrix wird und somit konnte ich die EW
> an der Diagonale ablesen. Ich erhalte so als Eigenwerte -2
> und -1, je zweimal.
Die Eigenwerte musst nochmal nachrechnen.
> b) Damit konnte ich dann die Eigenvektoren und somit auch
> die Eigenräume berechnen, ich erhalte als v1=(1 1 0 0)
> für den Eigenwert -1 und v2=(1 -2/3 1 -2/3) für den
> Eigenwert -2.
Da die Eigenwerte nicht stimmen,stimmen auch die Eigenvektoren nicht.
>
> Stimmt das so bisher? Weil jetzt ergibt sich das Problem,
> dass ich eine solche P Matrix finden soll. Hätte ich nun 4
> Eigenvektoren könnte ich ja diese als Basis nehmen, aber
> so weiss ich nicht, wie ich vorgehen muss. Ich habe
> probiert, [mm]PAP^{-1}=D[/mm] umzuformen, da ich D ja habe
> (Diagonalmatrix mit EW auf der Diagonalen...), aber leider
> hat das nicht so hingehauen. Ich wäre froh, wenn ihr mir
> dabei helfen könntet! Vielen Dank!
Gruss
MathePower
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 21:44 Mo 23.08.2010 | Autor: | natascha |
Hi,
Danke für die schnelle Antwort.
Ich habe das nochmal gemacht, aber ich erhalte immer noch eine Diagonalmatrix mit -1, -2, -1 und -2 auf der Diagonalen. Ich denke, dass wohl etwas mit meinem Verfahren nicht stimmt. Ich gehe folgendermassen vor:
Ich ersetze Zeile 4 durch Z4+3*Z3 , dann Z2 durch Z2+3*Z1 und anschliessend Zeile 3 durch Z3-Z4.
Muss ich da noch etwas bezüglich der Vorzeichen machen, oder wieso kommt das bei mir so?
Die Annahme, dass man so vorgehen darf und die EW auf der Diagonalen abholen kann, stimmt doch, oder?
Vielen Dank!
|
|
|
|
|
Hallo natascha,
> Hi,
>
> Danke für die schnelle Antwort.
> Ich habe das nochmal gemacht, aber ich erhalte immer noch
> eine Diagonalmatrix mit -1, -2, -1 und -2 auf der
> Diagonalen. Ich denke, dass wohl etwas mit meinem Verfahren
> nicht stimmt. Ich gehe folgendermassen vor:
> Ich ersetze Zeile 4 durch Z4+3*Z3 , dann Z2 durch Z2+3*Z1
> und anschliessend Zeile 3 durch Z3-Z4.
> Muss ich da noch etwas bezüglich der Vorzeichen machen,
> oder wieso kommt das bei mir so?
> Die Annahme, dass man so vorgehen darf und die EW auf der
> Diagonalen abholen kann, stimmt doch, oder?
Diese Vorgehensweise ist mir unbekannt.
Hier muss die Matrix
[mm]\pmat{-1 & -2 & 0 & 0 \\ 3 & 4 & 0 & 0 \\ 0 & 0 & -1 & -2 \\ 0 & 0 & 3 & 4}-\lambda*\pmat{1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1}[/mm]
betrachtet werden.
Um die Eigenwerte herauszubekommen, die Lösung von
[mm]\operatorname{det}\left(\pmat{-1 & -2 & 0 & 0 \\ 3 & 4 & 0 & 0 \\ 0 & 0 & -1 & -2 \\ 0 & 0 & 3 & 4}-\lambda*\pmat{1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1} \right)=0[/mm]
zu bestimmen.
> Vielen Dank!
Gruss
MathePower
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 22:02 Mo 23.08.2010 | Autor: | natascha |
Hi,
Ja, diese Methode wende ich sonst auch an. Ich habe es auch so versucht, und erhalte damit [mm] x^{4}-6x^{3}+13x^{2}-12x+4 [/mm] = 0
Jedoch stellt sich hier das Problem, dass ich das nicht lösen kann...wie geht man da rechnerisch am besten vor, um die Nullstellen zu bestimmen beim Grad 4?
Vielen Dank!
|
|
|
|
|
Hallo natascha,
> Hi,
>
> Ja, diese Methode wende ich sonst auch an. Ich habe es auch
> so versucht, und erhalte damit [mm]x^{4}-6x^{3}+13x^{2}-12x+4[/mm] =
> 0
> Jedoch stellt sich hier das Problem, dass ich das nicht
> lösen kann...wie geht man da rechnerisch am besten vor, um
> die Nullstellen zu bestimmen beim Grad 4?
Da es sich hier ume ein Polynom mit ganzzahligen Koeffizienten
handelt, bietet es sich an zunächst alle Teiler des Absolutgliedes 4
(auch die negativen) auszuprobieren.
> Vielen Dank!
Gruss
MathePower
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 22:14 Mo 23.08.2010 | Autor: | natascha |
Vielen Dank. Also ist es eher ein ausprobieren dann. Wenn ich nun sagen wir 1, -1, 2, -2, 4 und -4 ausprobiert habe, darf ich dann daraus schliessen dass 1 und 2 die einzigen Eigenwerte sind?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:06 Mo 23.08.2010 | Autor: | Teufel |
Hi!
Nein, das darfst du nicht schließen. Du weißt nur, dass das dann die einzigen ganzzahligen reellen Nullstellen sind. Du kannst aber dein Polynom dann mit Polynomdividion und co. kleinhacken um zu schauen, ob du noch Nullstellen findest. Aber hier gibt es wirklich nur Die Nullstellen 1 und 2, beide je 2 mal. Nun brauchst du die Eigenräume. Wenn beide die Dimension 2 haben, so kannst du deine Matrix diagonalisieren.
Teufel
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 08:10 Di 24.08.2010 | Autor: | natascha |
Super, vielen Dank euch allen, ich denke jetzt habe ich es! Eine kurze Rückfrage:
Ich habe nun die Eigenwerte überprüft mit Polynomdivision und die Eigenvektoren dann ausgerechnet, ich erhalte:
v1=(0 0 1 -1) und v2=(-1 1 0 0) für EW 1 und v3=(0 0 -2 3) und v4=(-2 3 0 0) für den EW 2. Kann ich jetzt sagen, dass der Eigenraum für 1 =span (v1, v2) ist und der Eigenraum für 2 = span (v3,v4) und dass die Matrix diagonalisierbar ist, da die beiden je 2-dimensional sind?
Danke!
|
|
|
|
|
Hallo natascha,
> Super, vielen Dank euch allen, ich denke jetzt habe ich es!
> Eine kurze Rückfrage:
> Ich habe nun die Eigenwerte überprüft mit
> Polynomdivision und die Eigenvektoren dann ausgerechnet,
> ich erhalte:
> v1=(0 0 1 -1) und v2=(-1 1 0 0) für EW 1 und v3=(0 0 -2
> 3) und v4=(-2 3 0 0) für den EW 2 . Kann ich jetzt sagen,
> dass der Eigenraum für 1 =span (v1, v2) ist und der
> Eigenraum für 2 = span (v3,v4) und dass die Matrix
> diagonalisierbar ist, da die beiden je 2-dimensional sind?
Ja, denn für alle (also alle beide ) Eigenwerte von $A$ gilt: algebraische Vielfachheit (= VFH als NST im char. Polynom) = geometr. Vielfachheit (=Dimension des zugeh. Eigenraumes)
Nun noch schnell die Matrizen [mm] $P,P^{-1}$ [/mm] bestimmen ...
Wenn du das hast, ist (d) ein Klacks.
Warum?
>
> Danke!
Gruß
schachuzipus
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 08:51 Di 24.08.2010 | Autor: | natascha |
Ahh super, jetzt scheint es zu klappen!
Ich habe nun die Eigenvektoren als Basis und somit als [mm] P^{-1} [/mm] genommen und konnte somit P finden. Scheint zu stimmen, denn ich habe [mm] PAP^{-1} [/mm] ausgerechnet und die Diagonalmatrix mit den EW erhalten.
Ich denke, für d) muss ich [mm] D=PAP^{-1} [/mm] umformen zu [mm] A=P^{-1}DP [/mm] und somit dürfte [mm] A^n=P^{-1}D^{n}P [/mm] sein, wenn ich mich richtig erinnere...stimmt das so?
Gruss,
Natascha
|
|
|
|
|
> Ich denke, für d) muss ich [mm]D=PAP^{-1}[/mm] umformen zu
> [mm]A=P^{-1}DP[/mm] und somit dürfte [mm]A^n=P^{-1}D^{n}P[/mm] sein, wenn
> ich mich richtig erinnere...stimmt das so?
Hallo,
ja, richtig.
Gruß v. Angela
|
|
|
|