www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisFixpunkt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - Fixpunkt
Fixpunkt < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fixpunkt: Idee
Status: (Frage) beantwortet Status 
Datum: 16:00 Do 13.04.2006
Autor: babel

Aufgabe
Definiere T: C([0,1]) -> C[0,1], wobei

Tf(x) = 1/2  [mm] \integral_{0}^{1}{sin(x+t) f(t) dt}. [/mm]

Zeige, dass T kontrahierend ist.

Hallo zusammen,
weiss jemand, wie ich diese Aufgabe angehen kann? Ich weiss, dass eine kontrahierende Abbildung eines vollständigen metrischen Raumes in sich genau einen Fixpunkt besitzt. Wie kann ich nun mit diesem Wissen, diese Aufgabe lösen?



Ich habe diese Aufgabe in keinem anderen Forum gestellt

        
Bezug
Fixpunkt: Antwort
Status: (Antwort) fertig Status 
Datum: 16:25 Do 13.04.2006
Autor: MatthiasKr

Hallo babel,

wenn ihr nicht auch zeigen müsst, dass $T(f)$ tatsächlich eine stetige funktion ist, dann ist die aufgabe relativ leicht. Du musst zeigen, dass es eine kontraktionskonstante $c<1$ gibt, so dass

[mm] |T(f_1)-T(f_2)|<=c|f_1-f_2| [/mm]

für alle [mm] $f_1,f_2\in [/mm] C([0,1])$ gilt. Schreibe Dir den linken Term einfach mal hin und überlege, wie man das integral evtl. abschätzen könnte. Dann bist du eigentlich schon fast fertig!

VG
Matthias

Bezug
                
Bezug
Fixpunkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:22 Fr 14.04.2006
Autor: babel

danke für den Hinweis, hilft mir weiter

Bezug
                
Bezug
Fixpunkt: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:42 So 16.04.2006
Autor: babel

Es geht irgendwie doch nicht. Wie kann ich dieses Integral ausrechnen? Wie muss ich das abschätzen. Kann mir jemand helfen?

Bezug
                        
Bezug
Fixpunkt: Antwort
Status: (Antwort) fertig Status 
Datum: 16:32 So 16.04.2006
Autor: leduart

Hallo babel
Hast du mal T(f(x1)-f(x2)) hingeschrieben? sin/x1-t) Additionstheorem anwenden sinx1 -sinx2  und entspr cos vor das Integral: Integral< max des Integranden*Länge des Intervalls und Dreiecksungl sollten zum Ziel führen.
Gruss leduart

Bezug
                        
Bezug
Fixpunkt: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Di 18.04.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]