www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-NumerikFixpunktbestimmung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Numerik" - Fixpunktbestimmung
Fixpunktbestimmung < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fixpunktbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:19 Mo 17.12.2012
Autor: Imperator_Serhat

Aufgabe
Zur Bestimmung des Fixpunktes [mm] x^{*} [/mm] der stetig differenzierbaren Abbildung [mm] \Phi [/mm] mit [mm] \left| \Phi' (x)\right|\not=1 [/mm] seien die folgenden Iterationsvorschriften für k=0,1,... definiert:
a) [mm] x_{k+1}:=\Phi(x_{k}) [/mm]
b) [mm] x_{k+1}:=\Phi^{-1}(x_{k}) [/mm]

Zeigen Si, dass mindestens eine der beiden Iterationen lokal konvergiert.

Ich habe leider keine Ahnung, was ich mit der Aufgabe anfangen soll.

Ich dache erst, ich gehe mit einer Beispielfunktion [mm] f(x)=x^2 [/mm] vor. Denn für f(x) gilt ja schon mal, dass [mm] f'(x)\not=1 [/mm] ist.

Dann denke ich, [mm] \Phi(x_{k}) [/mm] = [mm] x^2 [/mm] und [mm] \Phi^-1(x_{k})=\wurzel{x} [/mm]

Wenn ich die beiden Graphen seiche, schneiden die sich bei x=1, also nehme ich an [mm] x^{*}=1. [/mm]
Dann habe ich mit [mm] x_{0}=0.5 [/mm] angefangen und die Werte für die beiden Funktionen berechnet.

Und was nun?

        
Bezug
Fixpunktbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:28 Mo 17.12.2012
Autor: fred97


> Zur Bestimmung des Fixpunktes [mm]x^{*}[/mm] der stetig
> differenzierbaren Abbildung [mm]\Phi[/mm] mit [mm]\left| \Phi' (x)\right|\not=1[/mm]
> seien die folgenden Iterationsvorschriften für k=0,1,...
> definiert:
>  a) [mm]x_{k+1}:=\Phi(x_{k})[/mm]
>  b) [mm]x_{k+1}:=\Phi^{-1}(x_{k})[/mm]
>  
> Zeigen Si, dass mindestens eine der beiden Iterationen
> lokal konvergiert.
>  Ich habe leider keine Ahnung, was ich mit der Aufgabe
> anfangen soll.
>  
> Ich dache erst, ich gehe mit einer Beispielfunktion
> [mm]f(x)=x^2[/mm] vor. Denn für f(x) gilt ja schon mal, dass
> [mm]f'(x)\not=1[/mm] ist.

Doch, für x=1/2   !!


>  
> Dann denke ich, [mm]\Phi(x_{k})[/mm] = [mm]x^2[/mm] und
> [mm]\Phi^-1(x_{k})=\wurzel{x}[/mm]
>  
> Wenn ich die beiden Graphen seiche, schneiden die sich bei
> x=1, also nehme ich an [mm]x^{*}=1.[/mm]
>  Dann habe ich mit [mm]x_{0}=0.5[/mm] angefangen und die Werte für
> die beiden Funktionen berechnet.
>
> Und was nun?



Die Aufgabe ist nicht vollständig gestellt. Wo ist [mm] \Phi [/mm] definiert ???

Tipp:



Wegen $ [mm] \left| \Phi' (x)\right|\not=1 [/mm] $ und der Stetigkeit von [mm] \Phi' [/mm] ist

    $ [mm] \left| \Phi' (x)\right| [/mm] <1 $   für alle x oder $ [mm] \left| \Phi' (x)\right|>1 [/mm] $ für alle x.

FRED







Bezug
                
Bezug
Fixpunktbestimmung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 09:44 Mo 17.12.2012
Autor: Imperator_Serhat

Hallo Fred,

danke für die schnelle Antwort.

Das ist leider die ganze Aufgabe. Mir fehlte auch die Funktion [mm] \Phi [/mm] deswegen habe ich irgend eine Funktion genommen. Ich habe das mit [mm] \Phi'(x)\not=1 [/mm] so interpretiert, dass die Ableitungsfunktion nicht die Konstante 1 sein darf. Ich dachte sonst müsste da so was wie  [mm] \Phi'(x)\not=1 \forall [/mm] x [mm] \in \IR [/mm] srtehen.

Bezug
                        
Bezug
Fixpunktbestimmung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 Mi 19.12.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]