www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieFkt topologischer Räume
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Topologie und Geometrie" - Fkt topologischer Räume
Fkt topologischer Räume < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fkt topologischer Räume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:06 Sa 13.06.2015
Autor: AnnaRode

Aufgabe
Sei E := {abgeschlossen, kompakt, zusammenhängend}. Finden Sie, mit Begründung, für jedes EIG Element von E jeweils eine Beispeil einer Funktion f: R-> R, sodass bezüglich der euklidischen Metrik gilt:
Für alle A Teilmenge R: A EIG -> f(A) EIG
und gleichzeitig
es existiert A Teilmenge R: A EIG, f^-1(A) nicht EIG.


Für A zusammenhängend -> f(A) zusammenhängend und dass ein A zusammenhängend existiert, sodass f^-1(A) nicht zusammenhängend ist, habe ich folgende Lösung:

f: R\ {0} -> R f(x)=0
Das Urbild von {0} ist R\ {0} und daher nicht zusammenhängend.

Für A abgeschlossen habe ich überlegt, eine Funktion zu suchen, die evtl von Z->Z geht, da Z abgeschlossen in R ist, deren Urbild aber Q ist, da Q nicht abgeschlossen in R. Ich weiß aber nicht, wie ich eine solche Funktion finden kann. Insbesondere gilt ja eigentlich, dass die Urbilder abgeschlossener Mengen abgeschlossen sind, sofern die Funktion stetig ist. Vlt brauche ich also eine nicht stetige Funktion? (Wir haben erst Ende letzte Vorlesung Stetigkeit in einem Punkt definiert, daher weiß ich noch nicht viel darüber)

Für A kompakt, also A beschränkt und abgeschlossen habe ich an den Sinus gedacht. Ich weiß aber nicht, wie ich die Definitionsmenge wählen soll, damit das Urbild ganz R wird (weil R nicht kompakt ist).

Vielen Dank für eure Hilfe!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Fkt topologischer Räume: Antwort
Status: (Antwort) fertig Status 
Datum: 17:25 Sa 13.06.2015
Autor: hippias

[willkommenvh]
> Sei E := {abgeschlossen, kompakt, zusammenhängend}. Finden
> Sie, mit Begründung, für jedes EIG Element von E jeweils
> eine Beispeil einer Funktion f: R-> R, sodass bezüglich
> der euklidischen Metrik gilt:
>  Für alle A Teilmenge R: A EIG -> f(A) EIG

> und gleichzeitig
>  es existiert A Teilmenge R: A EIG, f^-1(A) nicht EIG.
>  
> Für A zusammenhängend -> f(A) zusammenhängend und dass
> ein A zusammenhängend existiert, sodass f^-1(A) nicht
> zusammenhängend ist, habe ich folgende Lösung:
>  
> f: R\ {0} -> R f(x)=0
>  Das Urbild von {0} ist R\ {0} und daher nicht
> zusammenhängend.

Beachte, dass $f$ auf ganz [mm] $\R$ [/mm] definiert sein soll; ich sehe leider gerade nicht, dass sich Dein Beispiel leicht so ergaenzen laesst, dass es noch immer das gewuenschte liefert.

>  
> Für A abgeschlossen habe ich überlegt, eine Funktion zu
> suchen, die evtl von Z->Z geht, da Z abgeschlossen in R
> ist, deren Urbild aber Q ist, da Q nicht abgeschlossen in
> R. Ich weiß aber nicht, wie ich eine solche Funktion
> finden kann. Insbesondere gilt ja eigentlich, dass die
> Urbilder abgeschlossener Mengen abgeschlossen sind, sofern
> die Funktion stetig ist. Vlt brauche ich also eine nicht
> stetige Funktion? (Wir haben erst Ende letzte Vorlesung
> Stetigkeit in einem Punkt definiert, daher weiß ich noch
> nicht viel darüber)
>  
> Für A kompakt, also A beschränkt und abgeschlossen habe
> ich an den Sinus gedacht. Ich weiß aber nicht, wie ich die
> Definitionsmenge wählen soll, damit das Urbild ganz R wird
> (weil R nicht kompakt ist).

Dein erstes Beispiel ist fuer die Eigenschaft "zusammenhaengend" leider nicht so gut gelungen. Aber ich glaube, es ist fuer die anderen Aufgaben sehr brauchbar (nach Fortsetzung von $f$ auf ganz [mm] $\IR$). [/mm]

>  
> Vielen Dank für eure Hilfe!
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Fkt topologischer Räume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:26 Sa 13.06.2015
Autor: AnnaRode

Vielen Dank für deine Rückmeldung!
Leider ist der Groschen bei mir noch nicht gefallen.

Wie genau meinst du Fortsetzung auf R?
Wenn f: R->R wähle, mit f(x)=0, dann ist R doch wieder weder kompakt noch abgeschlossen.
Inwiefern kann mir diese Abb. für abgeschl und kompakt helfen?

Und hast du einen Tipp für zusammenhängend?



Bezug
                        
Bezug
Fkt topologischer Räume: Antwort
Status: (Antwort) fertig Status 
Datum: 15:49 So 14.06.2015
Autor: hippias


> Vielen Dank für deine Rückmeldung!
>  Leider ist der Groschen bei mir noch nicht gefallen.
>  
> Wie genau meinst du Fortsetzung auf R?

$f$ soll auf ganz [mm] $\IR$ [/mm] definiert sein; Dein Beispiel war nur auf einer echten Teilmenge von [mm] $\IR$ [/mm] erklaert. Mit Fortsetzung meinte ich eine Funktion, die auf ganz [mm] $\IR$ [/mm] definiert ist und auf der Teilmenge mit Deiner Funktion uebereinstimmt.

> Wenn f: R->R wähle, mit f(x)=0, dann ist R doch wieder
> weder kompakt noch abgeschlossen.
>  Inwiefern kann mir diese Abb. für abgeschl und kompakt
> helfen?

Ich verstehe die Frage nicht. Deine Aufgabe hat zwei Teile (beispielsweise fuer die Eigenschaft "abgeschlosssen"):
1. Wenn [mm] $A\subseteq \IR$ [/mm] abgeschlossen ist, ist dann auch $f(A)$ abgeschlossen?
2. Gibt eine abgeschlossene Menge $X$, fuer die [mm] $f^{-1}(X)$ [/mm] nicht abgeschlossen ist?

Wobei Du besser nicht $f$ zu der Funktion fortsetzen solltest, die konstant $=0$ ist, sondern sie besser unstetig fortsetzt.  


>  
> Und hast du einen Tipp für zusammenhängend?
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]