www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeFläche soll minimiert werden
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Extremwertprobleme" - Fläche soll minimiert werden
Fläche soll minimiert werden < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fläche soll minimiert werden: Aufgabe aus Mathebuch
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:35 Mi 28.05.2008
Autor: dota

Aufgabe 1
Ein Bauer möchte ein neues Getreidesilo bauen, das die Form eines Zylinders mit einer aufgesetzten Halbkugel erhalten und 80m³ Getreide fassen soll. Die gesamte Innenfläche des Silos soll mit einem teuren Isolationsmaterial verkleidet werden. Untersuche, ob es Maße für die geplante Form des Silos gibt, bei denen die Kosten der Isolierung möglichst gering werden.

Aufgabe 2
Auf 850 ml Volumen ausgelegte Konservendosen haben, unabhängig vom Inhalt, alle dieselbe Form.
Warum wurde gerade diese Forum gewählt?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Zu Aufgabe 1 brauche ich den kompletten Lösungsweg, da ich es nicht verstehe:|

Und halt die Antwort zu Aufgabe 2

        
Bezug
Fläche soll minimiert werden: ad 1) Tipps und MatheBank
Status: (Antwort) fertig Status 
Datum: 14:43 Mi 28.05.2008
Autor: informix

Hallo dota und [willkommenmr],

> Ein Bauer möchte ein neues Getreidesilo bauen, das die Form
> eines Zylinders mit einer aufgesetzten Halbkugel erhalten
> und 80m³ Getreide fassen soll. Die gesamte Innenfläche des
> Silos soll mit einem teuren Isolationsmaterial verkleidet
> werden. Untersuche, ob es Maße für die geplante Form des
> Silos gibt, bei denen die Kosten der Isolierung möglichst
> gering werden.
>  Auf 850 ml Volumen ausgelegte Konservendosen haben,
> unabhängig vom Inhalt, alle dieselbe Form.
>  Warum wurde gerade diese Forum gewählt?
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  Zu Aufgabe 1 brauche ich den kompletten Lösungsweg, da ich
> es nicht verstehe:|

so ganz ophne eigene Lösungsansätze wirst du bei uns keine Anworten bekommen.
Gib doch bitte mal die Formel an, nach der sich die Innenfläche berechnen lassen sollte.

Das wäre dann die Extremalbedingng.
Da du aber eine Funktion, die von mehreren Variablen abhängt, nicht differenzieren kannst, brauchst du noch eine Nebenbedingung, die die Variablen untereinander in Beziehung setzt.

zum Verfahren: [guckstduhier] MBMiniMaxAufgaben [<-- click it!]




Gruß informix

Bezug
                
Bezug
Fläche soll minimiert werden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:53 Mi 28.05.2008
Autor: dota

okay, also einen eigenen Lösungsansatz haben wir schon

Fläche: [mm] 2\pi\*r\*h+\pi\*r^{2}+2\pi\*r^{2} [/mm]

Volumen: [mm] 80m³=\pi\*r²\*h+\bruch{2}{3}\*(\pi\*r³) [/mm]


Wie muss ich jetzt weitermachen...Umstellen nach h? und dann einsetzen?

danach bekomme ich die Formel:

Flächeninhalt [mm] A=2\*\pi\*r\*(\bruch{80-\bruch{2}{3}(\pi\*\*r³)}{\pi\*r²})+3\*\pi\*r² [/mm]


nun weiß ich aber nicht weiter...sorry

Bezug
                        
Bezug
Fläche soll minimiert werden: Antwort
Status: (Antwort) fertig Status 
Datum: 15:13 Mi 28.05.2008
Autor: M.Rex

Hallo

> okay, also einen eigenen Lösungsansatz haben wir schon
>  
> Fläche: [mm]2\pi\*r\*h+\pi\*r^{2}+2\pi\*r^{2}[/mm]

[daumenhoch]

>  
> Volumen: [mm]80m³=\pi\*r²\*h+\bruch{2}{3}\*(\pi\*r³)[/mm]
>  

Auch korrekt

>
> Wie muss ich jetzt weitermachen...Umstellen nach h? und
> dann einsetzen?

Yep, vereinfache aber weitestgehend, bevor du einsetzt.

Also:
[mm] V=\pi\*r²\*h+\bruch{2}{3}\*(\pi\*r³) [/mm]
[mm] \gdw V-\bruch{2}{3}\pi*r³=\pi*r²*h [/mm]
[mm] \gdw \bruch{V}{\pi*r²}-\bruch{\bruch{2}{3}\pi*r³}{\pi*r²}=h [/mm]
[mm] \gdw h=\bruch{V}{\pi*r²}-\bruch{\bruch{2}{3}r}{1} [/mm]
[mm] \gdw h=\bruch{V}{\pi*r²}-\bruch{2}{3}r [/mm]

>  
> danach bekomme ich die Formel:
>
> Flächeninhalt
> [mm]A=2\*\pi\*r\*(\bruch{80-\bruch{2}{3}(\pi\*\*r³)}{\pi\*r²})+3\*\pi\*r²[/mm]

Korrekt.

[mm] A(r,h)=2\pi*r*h+\pi*r^{2}+2\pi*r^{2} [/mm]
[mm] \gdw A(r,h)=2\pi*r*h+3\pi*r^{2} [/mm]

Jetzt einsetzen:

[mm] A(r)=3\pi*r²+2\pi*r*\left(\bruch{V}{\pi*r²}-\bruch{2}{3}r\right) [/mm]
[mm] =3\pi*r²+\bruch{2*\pi*r*V}{\pi*r²}-\bruch{2r*2\pi*r}{3} [/mm]
[mm] =3\pi*r²+\bruch{2V}{r}-\bruch{4\pi*r²}{3} [/mm]
[mm] =\bruch{5\pi}{3}*r²+2V*r^{-1} [/mm]

Und jetzt suchst du hiervon das Minimum.

Also: A'(r)=0
A''(r)>0

Behandele V und [mm] \pi [/mm] beim Ableiten als Konstanten.

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]