www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungFlächenberechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integralrechnung" - Flächenberechnung
Flächenberechnung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächenberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:22 Mo 25.02.2008
Autor: Burschid1

Aufgabe
Für jeden Wert t mit [mm] t\in\IR [/mm] gibt es zu f von t(x)=(x-t)² eine Parabel , die Zusammen mit den Geraden x=0 und x=6 und der x-Achse eine Fläche einschließt.
Für welchen Wert von t ist diese Fläche am kleinsten?
Welchen Inhalt hat Sie in diesem Fall?

Hallo!
Ich bin total am Verzweifeln.
Komme jetzt mit meiner Aufgabe nicht mehr weiter, habe aber schon einen Lösungsansatz gefunden.

Meine Lösung:

Nullstellen können nur Oberhalb der x-Achse liegen und in einem Intervall von 0 bis 6.

[mm] A=\integral_{0}^{6}{(x²-2tx+t²) dx}=A(x) [/mm]

Wie kann ich jetzt Weiterrechnen weil ich ja 2 Variablen habe (x,t) ?
DANKE IM VORRAUS!!
Lg Isa

        
Bezug
Flächenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:45 Mo 25.02.2008
Autor: Hippy

Aloha,
Dein Ansatz ist so schon richtig, du musst nur das ganze Moped über x integrieren. Dann müsste die Fläche in abhängigkeit von t herrauskommen. Damit diese dann minimal wird, musst du die Extrema bestimmen d.h.: die Ableitung der Fläche muss gleich 0 sein und damit das ganze dann minimal ist muss die 2. Ableitung kleiner null sein. So solltest du dein gesuchtes t rausbekommen, ich hoffe es hat dir weitergeholfen.

mfg Hippy

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]