www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungFlächeninhalt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - Flächeninhalt
Flächeninhalt < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächeninhalt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:59 Mi 27.08.2008
Autor: Mandy_90

Aufgabe
Gegeben sind die Funktionen [mm] f(x)=x^{2}-4x+4 [/mm] und [mm] g(x)=-x^{2}+4x-2. [/mm]
Gesucht ist der Inhalt der grauen Fläche.  

Hallo^^

[Dateianhang nicht öffentlich]

Ich versuch grad die Aufgabe zu lösen,komm aber nicht mehr weiter.
Also man braucht ja zunächst die Intervallgrenzen,also hab ich mal die Schnittpunkte der beiden Funktionen berechnet,dann bekomm ich für das Intervall [1;3] raus.
Und jetzt weiß ich nicht ob meine Idee so richtig ist,den Flächeninhalt zu berechnen.
Ich hab mir gedacht man könnte doch die Parabel von f(x) um 1 Einheit nach unten und 0.5 Einheit nach links verschieben.
Dann hat man das graue Stück oberhalb der rosanen gestrichelten Linie (die ich selbst dazugezeichnet hab) auf der x-Achse liegen.Dann brechnet man die Nullstellen von diesem Stück und hat die Intervallgrenzen.Anschließend verschiebt man dieses Parabelstück um 0.5 Einheiten nach links und bildet von dieser Funktion die Flächeninhaltsfunktion [mm] A_{0} [/mm] und berechnet damit den Flächeninhalt.
Zum Schluss multipliziert man das ganze mit 2 und hat so den Inhalt derkompletten grauen Fläche.


Ich hoffe ich hab mich einigermaßen verständlich ausgedrückt ;)
Lieg ich denn mit dieser Idee überhaupt richtig?

lg

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
Flächeninhalt: Antwort
Status: (Antwort) fertig Status 
Datum: 20:18 Mi 27.08.2008
Autor: schachuzipus

Hallo Mandy,

> Gegeben sind die Funktionen [mm]f(x)=x^{2}-4x+4[/mm] und
> [mm]g(x)=-x^{2}+4x-2.[/mm]
>  Gesucht ist der Inhalt der grauen Fläche.
> Hallo^^
>  
> [Dateianhang nicht öffentlich]

Irgendwie sehen mir die Graphen aber falsch eingezeichnet aus, im Anhang mal eine Skizze mit []FunkyPlot erstellt


>  
> Ich versuch grad die Aufgabe zu lösen,komm aber nicht mehr
> weiter.
>  Also man braucht ja zunächst die Intervallgrenzen,also hab
> ich mal die Schnittpunkte der beiden Funktionen
> berechnet,dann bekomm ich für das Intervall [1;3] raus.

[daumenhoch]

>  Und jetzt weiß ich nicht ob meine Idee so richtig ist,den
> Flächeninhalt zu berechnen.
>  Ich hab mir gedacht man könnte doch die Parabel von f(x)
> um 1 Einheit nach unten und 0.5 Einheit nach links
> verschieben.
>  Dann hat man das graue Stück oberhalb der rosanen
> gestrichelten Linie (die ich selbst dazugezeichnet hab) auf
> der x-Achse liegen.Dann brechnet man die Nullstellen von
> diesem Stück und hat die Intervallgrenzen.Anschließend
> verschiebt man dieses Parabelstück um 0.5 Einheiten nach
> links und bildet von dieser Funktion die
> Flächeninhaltsfunktion [mm]A_{0}[/mm] und berechnet damit den
> Flächeninhalt.
>  Zum Schluss multipliziert man das ganze mit 2 und hat so
> den Inhalt derkompletten grauen Fläche.
>  
>
> Ich hoffe ich hab mich einigermaßen verständlich
> ausgedrückt ;)
>  Lieg ich denn mit dieser Idee überhaupt richtig?


Hmm, auf jeden Fall ist sie viel zu kompliziert ;-)

Hier geht es darum die Fläche zwischen den beiden Funktionsgraphen zu berechnen.

Das macht man üblicherweise, indem man, wie du richtig gemacht hast, die Schnittpunkte der beiden Funktionen berechnet und dann von dem einen bis zum anderen Schnittpunkt über die Differenzfunktion integriert.

Betrachte also $h(x):=f(x)-g(x)$ und berechne [mm] $\int\limits_{1}^{3}{h(x) \ dx}$, [/mm] also [mm] $\int\limits_{1}^{3}{(2x^2-8x+6) \ dx}$ [/mm]  

Evtl. musst du den Betrag nehmen, je nachdem ob du $f(x)-g(x)$ oder $g(x)-f(x)$ als Differenzfunktion nimmst.

Je nachdem, welche der beiden Funktionsgraphen oberhalb des anderen läuft bekommst du ein positives oder negatives Ergebnis, daher evtl. den Betrag nehmen ;-)


Gruß

schachuzipus

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                
Bezug
Flächeninhalt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:28 Mi 27.08.2008
Autor: Mandy_90

hm okay,aber man muss doch trotzdem verschieben,weil die Funktion ja nicht bei 0 anfängt oder?

Bezug
                        
Bezug
Flächeninhalt: Antwort
Status: (Antwort) fertig Status 
Datum: 20:30 Mi 27.08.2008
Autor: schachuzipus

Hallo nochmal,

> hm okay,aber man muss doch trotzdem verschieben,weil die
> Funktion ja nicht bei 0 anfängt oder?

Nein, musst du nicht, einfach die Differenzfunktion von Schnittpunkt zu Schnittpunkt integrieren.

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]