www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungFlächeninhalt Dreieck
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra / Vektorrechnung" - Flächeninhalt Dreieck
Flächeninhalt Dreieck < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächeninhalt Dreieck: Teilaufgabe
Status: (Frage) beantwortet Status 
Datum: 14:08 Do 22.11.2007
Autor: replicant

Aufgabe
Gegeben seien die Punkte A = (15/2 | -3) und B = (6 | 4). Man wähle einen Punkt C auf der Parabel y = x².
a) Man berechne den Flächeninhalt des Dreiecks ABC
b) Bei welcher Wahl von C ist der Flächeninhalt minimal?

Hallo Forum,

ich habe ein kleines Problem mit der Teilaufgabe b)
Die a) konnte ich lösen. Erst: [mm] \overline{AB}, \overline{BC}, \overline{AC} [/mm] ausrechnen und dann mit dem Satz von Heron lösen.

Wie gehe ich jetzt vor um herauszufinden bei welchem Punkt der Flächeninhalt minimal wird? Sicher könnt ich viel ausprobieren, aber da muss es doch einen eleganteren Weg geben oder?

Wär toll wenn mir das jemand erklären könnte :-)




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Flächeninhalt Dreieck: Antwort
Status: (Antwort) fertig Status 
Datum: 18:59 Do 22.11.2007
Autor: Blech


> Gegeben seien die Punkte A = (15/2 | -3) und B = (6 | 4).
> Man wähle einen Punkt C auf der Parabel y = x².
>  a) Man berechne den Flächeninhalt des Dreiecks ABC
>  b) Bei welcher Wahl von C ist der Flächeninhalt minimal?
>  Hallo Forum,
>  
> ich habe ein kleines Problem mit der Teilaufgabe b)
>  Die a) konnte ich lösen. Erst: [mm]\overline{AB}, \overline{BC}, \overline{AC}[/mm]
> ausrechnen und dann mit dem Satz von Heron lösen.
>
> Wie gehe ich jetzt vor um herauszufinden bei welchem Punkt
> der Flächeninhalt minimal wird? Sicher könnt ich viel
> ausprobieren, aber da muss es doch einen eleganteren Weg
> geben oder?

Nachdem C auf der Parabel liegen soll, gilt für alle möglichen Punkte $C=(x; [mm] x^2)$. [/mm] Jetzt berechnest Du mit damit den Flächeninhalt in Abhängigkeit von x (d.h. Dein Flächeninhalt wird eine Funktion F(x) sein), und suchst für diese Funktion ganz normal ein Minimum.

Bsp:
$A=(0; -1),\ B=(1;-1),\ [mm] C=(x;(x+1)^2)$ [/mm]
d.h. die Grundlinie ist 1 breit, die Höhe ist [mm] (x+1)^2+1 [/mm] (der y-Wert von C plus 1, weil A und B auf y=-1 liegen)
[mm] $\Rightarrow F(x)=\frac{1}{2}*1*((x+1)^2+1)=\frac{(x+1)^2}{2}+\frac{1}{2}$ [/mm]
[mm] $F'(x)=x+1\overset{!}{=}0\ \Rightarrow\ [/mm] x=-1$
(theoretisch müßte man jetzt auch noch überprüfen, ob das ganze auch ein Minimum ist)

Bei Deiner Aufgabe ist das nicht ganz so einfach, weil A und B nicht auf einer waagrechten Linie liegen (damit ist das Minimum der Funktion des Flächeninhalts nicht gleich dem Minimum von [mm] x^2 [/mm] ), aber das Prinzip ist das gleiche.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]